1,742 research outputs found

    Revisiting Critical Vortices in Three-Dimensional SQED

    Full text link
    We consider renormalization of the central charge and the mass of the N=2{\cal N}=2 supersymmetric Abelian vortices in 2+1 dimensions. We obtain N=2{\cal N}=2 supersymmetric theory in 2+1 dimensions by dimensionally reducing the N=1{\cal N}=1 SQED in 3+1 dimensions with two chiral fields carrying opposite charges. Then we introduce a mass for one of the matter multiplets without breaking N=2 supersymmetry. This massive multiplet is viewed as a regulator in the large mass limit. We show that the mass and the central charge of the vortex get the same nonvanishing quantum corrections, which preserves BPS saturation at the quantum level. Comparison with the operator form of the central extension exhibits fractionalization of a global U(1) charge; it becomes 1/2 for the minimal vortex. The very fact of the mass and charge renormalization is due to a "reflection" of an unbalanced number of the fermion and boson zero modes on the vortex in the regulator sector.Comment: 24 pages, 2 figures Minor modifications, reference adde

    Large-N Solution of the Heterotic CP(N-1) Model with Twisted Masses

    Full text link
    We address a number of unanswered questions in the N=(0,2)-deformed CP(N-1) model with twisted masses. In particular, we complete the program of solving CP(N-1) model with twisted masses in the large-N limit. In hep-th/0512153 nonsupersymmetric version of the model with the Z_N symmetric twisted masses was analyzed in the framework of Witten's method. In arXiv:0803.0698 this analysis was extended: the large-N solution of the heterotic N=(0,2) CP(N-1) model with no twisted masses was found. Here we solve this model with the twisted masses switched on. Dynamical scenarios at large and small m are studied (m is the twisted mass scale). We found three distinct phases and two phase transitions on the m plane. Two phases with the spontaneously broken Z_N-symmetry are separated by a phase with unbroken Z_N. This latter phase is characterized by a unique vacuum and confinement of all U(1) charged fields ("quarks"). In the broken phases (one of them is at strong coupling) there are N degenerate vacua and no confinement, similarly to the situation in the N=(2,2) model. Supersymmetry is spontaneously broken everywhere except a circle |m|=\Lambda in the Z_N-unbroken phase. Related issues are considered. In particular, we discuss the mirror representation for the heterotic model in a certain limiting case.Comment: 69 pages, 14 figures; typos corrected, final version to appear in PRD; v Jan. 2014 Erratum added on p. 50, two references added and two references update

    Higher Winding Strings and Confined Monopoles in N=2 SQCD

    Full text link
    We consider composite string solutions in N=2 SQCD with the gauge group U(N), the Fayet--Iliopoulos term \xi \neq 0 and N (s)quark flavors. These bulk theories support non-Abelian strings and confined monopoles identified with kinks in the two-dimensional world-sheet theory. Similar and more complicated kinks (corresponding to composite confined monopoles) must exist in the world-sheet theories on composite strings. In a bid to detect them we analyze the Hanany--Tong (HT) model, focusing on a particular example of N=2. Unequal quark mass terms in the bulk theory result in the twisted masses in the N=(2,2) HT model. For spatially coinciding 2-strings, we find three distinct minima of potential energy, corresponding to three different 2-strings. Then we find BPS-saturated kinks interpolating between each pair of vacua. Two kinks can be called elementary. They emanate one unit of the magnetic flux and have the same mass as the conventional 't Hooft--Polyakov monopole on the Coulomb branch of the bulk theory (\xi =0). The third kink represents a composite bimonopole, with twice the minimal magnetic flux. Its mass is twice the mass of the elementary confined monopole. We find instantons in the HT model, and discuss quantum effects in composite strings at strong coupling. In addition, we study the renormalization group flow in this model.Comment: 41 pages, 11 figure

    Quantum Fusion of Domain Walls with Fluxes

    Full text link
    We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.Comment: 17 pages, 3 figure

    Relaxing a constraint on the number of messengers in a low-scale gauge mediation

    Full text link
    We propose a mechanism for relaxing a constraint on the number of messengers in low-scale gauge mediation models. The Landau pole problem for the standard-model gauge coupling constants in the low-scale gauge mediation can be circumvented by using our mechanism. An essential ingredient is a large positive anomalous dimension of messenger fields given by a large Yukawa coupling in a conformal field theory at high energies. The positive anomalous dimension reduces the contribution of the messengers to the beta function of the standard-model gauge couplings.Comment: 22pages; v2:explanations expanded in sec.3.2, reference adde

    QSSR estimate of the BBB_B parameter at next-to-leading order

    Full text link
    We compute the leading αs\alpha_s corrections to the two-point correlator of the OΔB=2O_{\Delta B=2} operator which controls the B0Bˉ0B^0 \bar B^0 mixing. Using this result within the QCD spectral sum rules approach and some phenomenologically reasonable assumptions in the parametrization of the spectral function, we conclude that the vacuum saturation values BBBB1B_B\simeq B_{B^*}\simeq 1 are satisfied within 15\%.Comment: 8 pages, LaTeX, CERN-TH.7140/94, PM 93/16, and KEK Preprint 93-184, two figures appended as a PS fil

    Resonance-continuum interference in the di-photon Higgs signal at the LHC

    Get PDF
    A low mass Standard Model Higgs boson should be visible at the Large Hadron Collider through its production via gluon-gluon fusion and its decay to two photons. We compute the interference of this resonant process, gg -> H -> gamma gamma, with the continuum QCD background, gg -> gamma gamma induced by quark loops. Helicity selection rules suppress the effect, which is dominantly due to the imaginary part of the two-loop gg -> gamma gamma scattering amplitude. The interference is destructive, but only of order 5% in the Standard Model, which is still below the 10-20% present accuracy of the total cross section prediction. We comment on the potential size of such effects in other Higgs models.Comment: 10 pages, 2 figure
    corecore