2,632 research outputs found
Neutrally stable atmospheric flow over a two-dimensional rectangular block
The phenomena of atmospheric flow over a two dimensional surface obstruction such as a building modeled as a rectangular block are analyzed by an approach using the Navier-Stokes equations with a two equation model of turbulence. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale are solved by a finite difference technique. The predicted results are in agreement with the limited experimental data available. Current computed results show that the separation bubble originates from the upper front corner of the block and extends approximately 11.5 block heights behind the block. The decay of the mean velocity along the wake center line coincides almost perfectly with the experimental data. The vertical profiles of the mean velocity defect are also in reasonable agreement with wind tunnel results. Velocity profiles in the mixing region are shown to agree with the error function profile typically found in the shear layer. Details of the behavior of the turbulence kinetic energy and the turbulence length scale are also discussed
Precise computer controlled positioning of robot end effectors using force sensors
A thorough study of combined position/force control using sensory feedback for a one-dimensional manipulator model, which may count for the spacecraft docking problem or be extended to the multi-joint robot manipulator problem, was performed. The additional degree of freedom introduced by the compliant force sensor is included in the system dynamics in the design of precise position control. State feedback based on the pole placement method and with integral control is used to design the position controller. A simple constant gain force controller is used as an example to illustrate the dependence of the stability and steady-state accuracy of the overall position/force control upon the design of the inner position controller. Supportive simulation results are also provided
Two-dimensional matrix algorithm using detrended fluctuation analysis to distinguish Burkitt and diffuse large B-cell lymphoma
Copyright © 2012 Rong-Guan Yeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.A detrended fluctuation analysis (DFA) method is applied to image analysis. The 2-dimensional (2D) DFA algorithms is proposed
for recharacterizing images of lymph sections. Due to Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), there
is a significant different 5-year survival rates after multiagent chemotherapy. Therefore, distinguishing the difference between BL
and DLBCL is very important. In this study, eighteen BL images were classified as group A, which have one to five cytogenetic
changes. Ten BL images were classified as group B, which have more than five cytogenetic changes. Both groups A and B BLs are
aggressive lymphomas, which grow very fast and require more intensive chemotherapy. Finally, ten DLBCL images were classified
as group C. The short-term correlation exponent α1 values of DFA of groups A, B, and C were 0.370 ± 0.033, 0.382 ± 0.022, and
0.435 ± 0.053, respectively. It was found that α1 value of BL image was significantly lower (P < 0.05) than DLBCL. However, there
is no difference between the groups A and B BLs. Hence, it can be concluded that α1 value based on DFA statistics concept can
clearly distinguish BL and DLBCL image.National Science Council (NSC) of Taiwan the Center for Dynamical Biomarkers and
Translational Medicine, National Central University, Taiwan (also sponsored by National Science Council)
Optimizing 4DCBCT Projection Allocation to Respiratory Bins
Four dimensional cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a ducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm signi cantly improves image quality in 4DCBCT images and provides, for the rst time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications
Large strain actuation in barium titanate single crystals under stress and electric field
Large strain actuation in barium titanate (BaTiO3) single crystals subjected to combined uniaxial stress and electric field is examined. A maximum strain of about 0.45% is measured under a combined loading of 2.7 MPa compressive stress and ±1.25 MVm-1 cyclic electric field. Above 2.7 MPa, the crystal does not cycle fully between the in-plane and out-of-plane polarized states due to large compressive stress, and consequently, a considerable reduction in actuation strain is apparent. The hysteresis evolution of the crystal under combined electromechanical loading reveals incomplete switching characteristics and a considerable disproportion of slope gradients at zero electric field for the measured polarization and strain hysteresis curves. A likely cause for the disproportion of slope gradients is the cooperative operation of multiple 90° switching systems by which “polarization-free” strain changes are induced
Respiratory Motion Guided Four Dimensional Cone Beam Computed Tomography: Encompassing Irregular Breathing
Four dimensional cone beam computed tomography (4DCBCT) images su er from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, Respiratory Motion Guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient's respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG- 4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient's respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 minute acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quanti ed streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-o image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C- arm CBCT systems, with an acceleration up to 200 degrees=s2, a velocity up to 100 degrees=s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 seconds. We have made considerable progress towards realising a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient
Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency
Subsequence matching has appeared to be an ideal approach for solving many
problems related to the fields of data mining and similarity retrieval. It has
been shown that almost any data class (audio, image, biometrics, signals) is or
can be represented by some kind of time series or string of symbols, which can
be seen as an input for various subsequence matching approaches. The variety of
data types, specific tasks and their partial or full solutions is so wide that
the choice, implementation and parametrization of a suitable solution for a
given task might be complicated and time-consuming; a possibly fruitful
combination of fragments from different research areas may not be obvious nor
easy to realize. The leading authors of this field also mention the
implementation bias that makes difficult a proper comparison of competing
approaches. Therefore we present a new generic Subsequence Matching Framework
(SMF) that tries to overcome the aforementioned problems by a uniform frame
that simplifies and speeds up the design, development and evaluation of
subsequence matching related systems. We identify several relatively separate
subtasks solved differently over the literature and SMF enables to combine them
in straightforward manner achieving new quality and efficiency. This framework
can be used in many application domains and its components can be reused
effectively. Its strictly modular architecture and openness enables also
involvement of efficient solutions from different fields, for instance
efficient metric-based indexes. This is an extended version of a paper
published on DEXA 2012.Comment: This is an extended version of a paper published on DEXA 201
The First Implementation of Respiratory Triggered 4DCBCT on a Linear Accelerator
Four Dimensional Cone Beam Computed Tomography (4DCBCT) is an image guidance strategy used for patient positioning in radiotherapy. In conventional implementations of 4DCBCT, a constant gantry speed and a constant projection pulse rate are used. Unfortunately, this leads to higher imaging doses than are necessary because a large number of redundant projections are acquired. In theoretical studies, we have previously demonstrated that by suppressing redundant projections the imaging dose can be reduced by 40-50% for a majority of patients with little reduction in image quality. The aim of this study was to experimentally realise the projection suppression technique, which we have called Respiratory Triggered 4DCBCT (RT-4DCBCT). A real-time control system was developed that takes the respiratory signal as input and computes whether to acquire, or suppress, the next projection trigger during 4DCBCT acquisition. The CIRS dynamic thorax phantom was programmed with a 2cm peak-to-peak motion and periods ranging from 2 to 8 seconds. Image quality was assessed by computing the edge response width of a 3cm imaging insert placed in the phantom as well as the signal to noise ratio of the phantoms tissue and the contrast to noise ratio between the phantoms lung and tissue. The standard deviation in the Superior-Inferior direction of the 3cm imaging insert was used to assess intra-phase bin displacement variations with a higher standard deviation implying more motion blur. The 4DCBCT imaging dose was reduced by 8.6%, 41%, 54%, 70% and 77% for patients with 2, 3, 4, 6 and 8 second breathing periods respectively when compared to conventional 4DCBCT. The standard deviation of the intra-phase bin displacement variation of the 3cm imaging insert was reduced by between 13% and 43% indicating a more consistent position for the projections within respiratory phases. For the 4 second breathing period, the edge response width was reduced by 39% (0.8mm) with only a 6-7% decrease in the signal to noise and contrast to noise ratios. RT-4DCBCT has been experimentally realised and reduced to practice on a linear accelerator with a measurable imaging dose reductions over conventional 4DCBCT and little degradation in image quality
Thermoelastic Damping in Micro- and Nano-Mechanical Systems
The importance of thermoelastic damping as a fundamental dissipation
mechanism for small-scale mechanical resonators is evaluated in light of recent
efforts to design high-Q micrometer- and nanometer-scale electro-mechanical
systems (MEMS and NEMS). The equations of linear thermoelasticity are used to
give a simple derivation for thermoelastic damping of small flexural vibrations
in thin beams. It is shown that Zener's well-known approximation by a
Lorentzian with a single thermal relaxation time slightly deviates from the
exact expression.Comment: 10 pages. Submitted to Phys. Rev.
Fatal encephalitis and myocarditis in young domestic geese (Anser anser domesticus) caused by West Nile virus.
During 1999 and 2000, a disease outbreak of West Nile (WN) virus occurred in humans, horses, and wild and zoological birds in the northeastern USA. In our experiments, WN virus infection of young domestic geese (Anser anser domesticus) caused depression, weight loss, torticollis, opisthotonus, and death with accompanying encephalitis and myocarditis. Based on this experimental study and a field outbreak in Israel, WN virus is a disease threat to young goslings and viremia levels are potentially sufficient to infect mosquitoes and transmit WN virus to other animal species
- …