982 research outputs found

    Utility Function and Fiscal Illusion from Grants

    Get PDF

    Little String Theory from Double-Scaling Limits of Field Theories

    Full text link
    We show that little string theory on S^5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on RxS^2 and RxS^3/Z_k. By matching the gauge theory parameters with those in the gravity duals found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on RxS^2, the 't Hooft coupling must be scaled like ln^3(N), and on RxS^3/Z_k, like ln^2(N). Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S^5.Comment: 16 pages, 5 figures. Minor change

    Superconductivity from D3/D7: Holographic Pion Superfluid

    Full text link
    We show that a D3/D7 system (at zero quark mass limit) at finite isospin chemical potential goes through a superconductor (superfluid) like phase transition. This is similar to a flavored superfluid phase studied in QCD literature, where mesonic operators condensate. We have studied the frequency dependent conductivity of the condensate and found a delta function pole in the zero frequency limit. This is an example of superconductivity in a string theory context. Consequently we have found a superfluid/supercurrent type solution and studied the associated phase diagram. The superconducting transition changes from second order to first order at a critical superfluid velocity. We have studied various properties of the superconducting system like superfluid density, energy gap, second sound etc. We investigate the possibility of the isospin chemical potential modifying the embedding of the flavor branes by checking whether the transverse scalars also condense at low temperature. This however does not seem to be the case.Comment: 18 pages, 8 figures, revtex

    Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by the degeneration of alpha motor neurons in the spinal cord, leading to muscular atrophy. SMA is caused by deletions or mutations in the survival motor neuron 1 gene (SMN1). In humans, a nearly identical copy gene, SMN2, is present. Because SMN2 has been shown to decrease disease severity in a dose-dependent manner, SMN2 copy number is predictive of disease severity. To develop a treatment algorithm for SMA-positive infants identified through newborn screening based upon SMN2 copy number. A working group comprised of 15 SMA experts participated in a modified Delphi process, moderated by a neutral third-party expert, to develop treatment guidelines. The overarching recommendation is that all infants with two or three copies of SMN2 should receive immediate treatment (n = 13). For those infants in which immediate treatment is not recommended, guidelines were developed that outline the timing and appropriate screens and tests to be used to determine the timing of treatment initiation. The identification SMA affected infants via newborn screening presents an unprecedented opportunity for achievement of maximal therapeutic benefit through the administration of treatment pre-symptomatically. The recommendations provided here are intended to help formulate treatment guidelines for infants who test positive during the newborn screening process

    On the existence of supergravity duals to D1--D5 CFT states

    Full text link
    We define a metric operator in the 1/2-BPS sector of the D1-D5 CFT, the eigenstates of which have a good semi-classical supergravity dual; the non-eigenstates cannot be mapped to semi-classical gravity duals. We also analyse how the data defining a CFT state manifests itself in the gravity side, and show that it is arranged into a set of multipoles. Interestingly, we find that quantum mechanical interference in the CFT can have observable manifestations in the semi-classical gravity dual. We also point out that the multipoles associated to the normal statistical ensemble fluctuate wildly, indicating that the mixed thermal state should not be associated to a semi-classical geometry.Comment: 22 pages, 2 figures. v2 : references added, typos correcte

    Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence

    Get PDF
    The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair production measurements were done using two independent methods simultaneously. The more complex method using a magnet spectrometer showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for publicatio

    Quantum geometry and gravitational entropy

    Full text link
    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S^5 universes. In this sector we devise a "coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.Comment: 29 pages, 2 figures; references adde
    • …
    corecore