43 research outputs found

    Synergistic effect of octadecyl ammonium oxide and oleate amide propyl betaine and development of a foam drainage reagent for natural gas production

    Get PDF
    Betaine surfactants are used widely in oil field chemistry as well as other industrial applications, but their foaming ability is very poor so that it cannot be used in foaming. In this work, the effect of octadecyl ammonium oxide on the foam properties of oleate amide propyl betaine, a new compound foaming reagent, is studied based on foam performance. Then, a foam drainage reagent of 0.5 wt% oleate amide propyl betaine and 0.1 wt% octadecyl ammonium oxide is developed for natural gas production. Its salt resistance, methanol resistance, high temperature resistance, anti-condensate oil performance, and emulsification ability are systematically evaluated. Furthermore, the factors affecting foam performance are analyzed. The results show that the compound foaming reagent has good anti-salt, anti-methanol, and anti-condensate oil properties for meeting application requirements. The microstructures of foams derived from different reagents reveal the stability mechanism. All results reflect the fact that compounding can expand their application range in different environments to various extents, which benefits the design and use of compound surfactants

    Synergistic effect of octadecyl ammonium oxide and oleate amide propyl betaine and development of a foam drainage reagent for natural gas production

    Get PDF
    Betaine surfactants are used widely in oil field chemistry as well as other industrial applications, but their foaming ability is very poor so that it cannot be used in foaming. In this work, the effect of octadecyl ammonium oxide on the foam properties of oleate amide propyl betaine, a new compound foaming reagent, is studied based on foam performance. Then, a foam drainage reagent of 0.5 wt% oleate amide propyl betaine and 0.1 wt% octadecyl ammonium oxide is developed for natural gas production. Its salt resistance, methanol resistance, high temperature resistance, anti-condensate oil performance, and emulsification ability are systematically evaluated. Furthermore, the factors affecting foam performance are analyzed. The results show that the compound foaming reagent has good anti-salt, anti-methanol, and anti-condensate oil properties for meeting application requirements. The microstructures of foams derived from different reagents reveal the stability mechanism. All results reflect the fact that compounding can expand their application range in different environments to various extents, which benefits the design and use of compound surfactants

    Steroidal glycoalkaloids in potato foods as affected by cooking methods

    No full text
    Potato and its products have become indispensable foods and snacks for most people. Steroidal glycoalkaloids (SGAs) occur in all tissues of the potato, and consuming potatoes with a high SGA content harms human health. Therefore, the effects of different cooking methods on the SGA content in potato foods were investigated in this study. The results indicated that adding food-grade acetic acid during the manufacturing process did not affect the SGA content in stir-fried shredded potatoes or fresh mashed potatoes. However, the SGA content in potato food after peeling was significantly lower than that in non-peeled food, and the volume ratio of potato skin to flesh decreased with the increase of the potato tuber volume. Therefore, potato breeders and farmers should make the most hard to increase the proportion of commodity potato via corresponding science and technology. In addition, frying significantly reduced the SGA content in potato chips. Further research indicated that SGAs degraded slowly at 150°C, while they degraded rapidly at 190°C within 30 min. The temperature of rapeseed oil in the frying process can be as high above 200°C. Thus, frying significantly decreased the SGA content in potato chips, which could be attributed to temperature. These results will provide a theoretical basis and practical guidance for potato breeding and cooking

    PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway

    No full text
    Abstract Background Heterogeneity in bladder cancer results in variable clinical outcomes, posing challenges for clinical management of this malignancy. Recent studies suggest both tumor suppressive and oncogenic role of PPARγ in bladder cancer. The fuction of PPARγ signaling pathway in modulating carcinogenesis is controversial. Methods The expression of PPARγ and association with overall survival were analyzed in patients from two cohorts. The effect of PPARγ activation on cell proliferation, cell cycle, and cell apoptosis were determined with the agonists (rosiglitazone and pioglitazone), the inverse agonist (T0070907), and the antagonist (GW9662) in Umuc-3 and 5637 bladder cancer cells. The correlation of PPARγ activation with PI3K-Akt pathway was evaluated with RNA sequencing data from the TCGA cases and 30 human bladder cancer cell lines. The effect of PPARγ activation on tumor growth was validated with subcutaneous tumor models in vivo. The effect of PPARγ activation on PI3K-Akt signaling transduction was determined with multiple assays including immunohistochemistry, flow cytometry, proteomic array, and western blotting. Results We showed that PPARγ was a favorable prognostic factor in patients with bladder cancer. PPARγ activation by rosiglitazone and pioglitazone markedly induced cell cycle G2 arrest and apoptosis in bladder cancer cells, which resulted in inhibition of cell proliferation in vitro and suppression of tumor growth in vivo. The underlying mechanism involved marked inhibition of PI3K-Akt pathway. Conclusions This study reported the tumor-suppressive effect of PPARγ agonists in bladder cancer, suggesting that transactivation of PPARγ could be served as a potential strategy for the chemoprevention and therapeutic treatment of bladder cancer

    Guaranteeing QoS for NOMA-Enabled URLLC Based on κ–μ Shadowed Fading Model

    No full text
    Sixth-generation (6G) wireless communication scenarios are complex and diverse. Small-scale fading is a key part of wireless channels and its impact on performance in scenarios with time sensitivity and 6G ultrareliable and low latency communications (URLLC) quality-of-service requirements cannot be ignored. Therefore, it is necessary to accurately characterize small-scale fading when designing wireless communication systems. In this paper, we derive approximate closed form expressions for the probability density function, cumulative distribution function and moment-generating function of the postprocessing signal-to-noise ratio following the zero-forcing detector in a cell-free massive multiple-input multiple-output (CF mMIMO) system. CF mMIMO system is a nonorthogonal multiple access (NOMA) system that enables users to share all channel uses and can ensure the fairness of the communication quality experienced by different users. Our key contributions include the extension of the κ–μ shadowed fading model to a CF mMIMO system and the proposal of theoretical tools (the derived closed-form expression) to improve its mathematical tractability. By exploiting the statistical characterizations of the arrival and service processes, another important contribution is the exploitation of the upper bound of the queuing delay violation probability (UB-QDVP) over the Mellin transforms of the arrival and service processes in the proposed CF mMIMO system under the κ–μ shadowed fading model. Corroborated by extensive simulations, our analyses validate that the CF mMIMO system outperforms the orthogonal multiple access and power-domain NOMA systems and reveal the relationships among different small-scale fading types, energy efficiency, delay and the UB-QDVP, as well as the accuracy and effectiveness of the proposed theoretical tools based on the κ–μ shadowed fading model

    Study on the Decomposition Mechanism of Natural Gas Hydrate Particles and Its Microscopic Agglomeration Characteristics

    No full text
    Research on hydrate dissociation mechanisms is critical to solving the issue of hydrate blockage and developing hydrate slurry transportation technology. Thus, in this paper, natural gas hydrate slurry decomposition experiments were investigated on a high-pressure hydrate experimental loop, which was equipped with two on-line particle analyzers: focused beam reflectance measurement (FBRM) and particle video microscope (PVM). First, it was observed from the PVM that different hydrate particles did not dissociate at the same time in the system, which indicated that the probability of hydrate particle dissociation depended on the particle’s shape and size. Meanwhile, data from FBRM presented a periodic oscillating trend of the particle/droplet numbers and chord length during the hydrate slurry dissociation, which further demonstrated these micro hydrate particles/droplets were in a dynamic coupling process of breakage and agglomeration under the action of flow shear during the hydrate slurry dissociation. Then, the influences of flow rate, pressure, water-cut, and additive dosage on the particles chord length distribution during the hydrate decomposition were summarized. Moreover, two kinds of particle chord length treatment methods (the average un-weighted and squared-weighted) were utilized to analyze these data onto hydrate particles’ chord length distribution. Finally, based on the above experimental data analysis, some important conclusions were obtained. The agglomeration of particles/droplets was easier under low flow rate during hydrate slurry dissociation, while high flow rate could restrain agglomeration effectively. The particle/droplet agglomerating trend and plug probability went up with the water-cut in the process of hydrate slurry decomposition. In addition, anti-agglomerates (AA) greatly prohibited those micro-particles/droplets from agglomeration during decomposition, resulting in relatively stable mean and square weighting chord length curves

    Resource Allocation in Multi-Carrier Multiplexed NOMA Cooperative System

    No full text
    Non-orthogonal multiple access (NOMA) cooperative communication technology can combine the advantages of NOMA and cooperative communication, providing high spectrum efficiency and increasing user coverage for next-generation wireless systems. However, the research on NOMA cooperative communication technology is still in a preliminary stage and has mainly concentrated on the scenario of fewer users. This paper focuses on a user-centered NOMA collaboration system in an ultra-dense network, and it constructs a resource allocation optimization problem to meet the demands of each user. Then, this paper decomposes the optimization problem into two subproblems; one is the grouping match among multiple relays and users, and the other is jointly allocating power and subcarrier resources. Accordingly, a dynamic packet matching algorithm based on Gale–Shapley and an iterative algorithm based on the difference of convex functions programing are proposed. Compared with existing schemes, the proposed algorithms can improve system throughput while ensuring the quality of service of users

    Experimental analysis of bladder cancer-associated mutations in EP300 identifies EP300-R1627W as a driver mutation

    No full text
    Abstract Background Bladder cancer (BCa) is the most common malignant tumor of the urinary system, with transitional cell carcinoma (TCC) being the predominant type. EP300 encodes a lysine acetyltransferase that regulates a large subset of genes by acetylating histones and non-histone proteins. We previously identified several bladder cancer-associated mutations in EP300 using high-throughput sequencing; however, the functional consequences of these mutations remain unclear. Methods Bladder cancer cells T24 and TCC-SUP were infected with shEP300 lentiviruses to generate stable EP300 knockdown cell lines. The expression levels of EP300, p16 and p21 were detected by real-time PCR and western blots. The transcriptional activity of p16 and p21 were detected by dual luciferase assay. Cell proliferation assay, flow cytometric analyses of cell cycle, invasion assay and xenograft tumor model were used to measure the effect of EP300-R1627W mutation in bladder cancer. Immunoprecipitation was used to explore the relationship between EP300-R1627W mutation and p53. Structural analysis was used to detect the structure of EP300-R1627W protein compared to EP300-wt protein. Results we screened the mutations of EP300 and found that the EP300-R1627W mutation significantly impairs EP300 transactivation activity. Notably, we demonstrated that the R1627W mutation impairs EP300 acetyltransferase activity, potentially by interfering with substrate binding. Finally, we show that EP300-R1627W is more aggressive in growth and invasion in vitro and in vivo compared to cells expressing EP300-wt. We also found that the EP300-R1627W mutation occurs frequently in seven different types of cancers. Conclusion In summary, our work defines a driver role of EP300-R1627W in bladder cancer development and progression

    Experimental Study on Hydrate Formation and Flow Characteristics with High Water Cuts

    No full text
    The rapid increasing amount of produced water in the deep-water and ultra-deep-water fields, especially those at their later development stages, increases the risk of the occurrence of hydrates plugging. In order to prevent and remediate the hydrates risks, it is important to understand the hydrate formation, slurry flow, and plugging characteristics and mechanisms under high water cuts conditions. In this paper, experiments with high water cuts ranging from 60–100% were conducted using a high pressure flow loop with observation windows. The whole processes of the hydrate formation, slurry flow and plugging is visually seen and recorded, and has been discussed and explained in detail in this paper. Moreover, it is found that the increasing water cuts shorten the induction time, but increase the volume fraction of hydrates. As the water cuts increase, the flow time of the hydrate slurry decreases, which serves as a critical parameter for the safe operation of the pipeline. In addition, different hypothetical mechanisms have been proposed for the medium and high water cuts conditions. We believe that this research can provide theoretical support for the safe transportation of oil and gas development in the high water cut oilfield
    corecore