4 research outputs found

    Therapeutic Properties of Trichopus zeylanicus Subsp. travancoricus, a Rare, Endangered Medicinal Plant in South India: A Review

    Get PDF
    Trichopus zeylanicus subsp. travancoricus, belonging to the family Trichopodaceae, is a small herbaceous plant exclusively present in Western Ghats of South India. The indigenous tribal community in Western Ghats traditionally use this plant for getting instant energy to combat fatigue. Recent pharmacological studies have revealed that besides its antifatigue property, this plant possess many medicinal properties such as anti-oxidant, anti-inflammatory, anti-stress, immunomodulatory, antidiabetic, aphrodisiac, antihyperlipidemic, antitumor, antiulcer, antimicrobial and hepatoprotective activity. This article comprehensively review the results of pharmacological studies so far done in this plant and emphasizes perspectives that warrant future research to explore its full pharmacological potential

    High Quality Draft Genome of Arogyapacha (Trichopus zeylanicus), an Important Medicinal Plant Endemic to Western Ghats of India

    No full text
    Arogyapacha, the local name of Trichopus zeylanicus, is a rare, indigenous medicinal plant of India. This plant is famous for its traditional use as an instant energy stimulant. So far, no genomic resource is available for this important plant and hence its metabolic pathways are poorly understood. Here, we report on a high-quality draft assembly of approximately 713.4 Mb genome of T. zeylanicus, first draft genome from the genus Trichopus. The assembly was generated in a hybrid approach using Illumina short-reads and Pacbio longer-reads. The total assembly comprised of 22601 scaffolds with an N50 value of 433.3 Kb. We predicted 34452 protein coding genes in T. zeylanicus genome and found that a significant portion of these predicted genes were associated with various secondary metabolite biosynthetic pathways. Comparative genome analysis revealed extensive gene collinearity between T. zeylanicus and its closely related plant species. The present genome and annotation data provide an essential resource to speed-up the research on secondary metabolism, breeding and molecular evolution of T. zeylanicus
    corecore