5 research outputs found

    Life Support Limitations in Mechanically Ventilated Stroke Patients

    No full text
    Objectives:. The determinants of decisions to limit life support (withholding or withdrawal) in ventilated stroke patients have been evaluated mainly for patients with intracranial hemorrhages. We aimed to evaluate the frequency of life support limitations in ventilated ischemic and hemorrhagic stroke patients compared with a nonbrain-injured population and to determine factors associated with such decisions. Design:. Multicenter prospective French observational study. Setting:. Fourteen ICUs of the French OutcomeRea network. PATIENTS:. From 2005 to 2016, we included stroke patients and nonbrain-injured patients requiring invasive ventilation within 24 hours of ICU admission. INTERVENTION:. None. MEASUREMENTS AND MAIN RESULTS:. We identified 373 stroke patients (ischemic, n = 167 [45%]; hemorrhagic, n = 206 [55%]) and 5,683 nonbrain-injured patients. Decisions to limit life support were taken in 41% of ischemic stroke cases (vs nonbrain-injured patients, subdistribution hazard ratio, 3.59 [95% CI, 2.78–4.65]) and in 33% of hemorrhagic stroke cases (vs nonbrain-injured patients, subdistribution hazard ratio, 3.9 [95% CI, 2.97–5.11]). Time from ICU admission to the first limitation was longer in ischemic than in hemorrhagic stroke (5 [3–9] vs 2 d [1–6] d; p < 0.01). Limitation of life support preceded ICU death in 70% of ischemic strokes and 45% of hemorrhagic strokes (p < 0.01). Life support limitations in ischemic stroke were increased by a vertebrobasilar location (vs anterior circulation, subdistribution hazard ratio, 1.61 [95% CI, 1.01–2.59]) and a prestroke modified Rankin score greater than 2 (2.38 [1.27–4.55]). In hemorrhagic stroke, an age greater than 70 years (2.29 [1.43–3.69]) and a Glasgow Coma Scale score less than 8 (2.15 [1.08–4.3]) were associated with an increased risk of limitation, whereas a higher nonneurologic admission Sequential Organ Failure Assessment score was associated with a reduced risk (per point, 0.89 [0.82–0.97]). Conclusions:. In ventilated stroke patients, decisions to limit life support are more than three times more frequent than in nonbrain-injured patients, with different timing and associated risk factors between ischemic and hemorrhagic strokes

    Association Between Early Invasive Mechanical Ventilation and Day-60 Mortality in Acute Hypoxemic Respiratory Failure Related to Coronavirus Disease-2019 Pneumonia

    No full text
    Objectives:. About 5% of patients with coronavirus disease-2019 are admitted to the ICU for acute hypoxemic respiratory failure. Opinions differ on whether invasive mechanical ventilation should be used as first-line therapy over noninvasive oxygen support. The aim of the study was to assess the effect of early invasive mechanical ventilation in coronavirus disease-2019 with acute hypoxemic respiratory failure on day-60 mortality. Design:. Multicenter prospective French observational study. Setting:. Eleven ICUs of the French OutcomeRea network. Patients:. Coronavirus disease-2019 patients with acute hypoxemic respiratory failure (Pao2/Fio2 ≤ 300 mm Hg), without shock or neurologic failure on ICU admission, and not referred from another ICU or intermediate care unit were included. Intervention:. We compared day-60 mortality in patients who were on invasive mechanical ventilation within the first 2 calendar days of the ICU stay (early invasive mechanical ventilation group) and those who were not (nonearly invasive mechanical ventilation group). We used a Cox proportional-hazard model weighted by inverse probability of early invasive mechanical ventilation to determine the risk of death at day 60. Measurement and Main Results:. The 245 patients included had a median (interquartile range) age of 61 years (52–69 yr), a Simplified Acute Physiology Score II score of 34 mm Hg (26–44 mm Hg), and a Pao2/Fio2 of 121 mm Hg (90–174 mm Hg). The rates of ICU-acquired pneumonia, bacteremia, and the ICU length of stay were significantly higher in the early (n = 117 [48%]) than in the nonearly invasive mechanical ventilation group (n = 128 [52%]), p < 0.01. Day-60 mortality was 42.7% and 21.9% in the early and nonearly invasive mechanical ventilation groups, respectively. The weighted model showed that early invasive mechanical ventilation increased the risk for day-60 mortality (weighted hazard ratio =1.74; 95% CI, 1.07–2.83, p=0.03). Conclusions:. In ICU patients admitted with coronavirus disease-2019-induced acute hypoxemic respiratory failure, early invasive mechanical ventilation was associated with an increased risk of day-60 mortality. This result needs to be confirmed

    Presentation, management, and outcomes of older compared to younger adults with hospital-acquired bloodstream infections in the intensive care unit: a multicenter cohort study

    No full text
    Purpose: Older adults admitted to the intensive care unit (ICU) usually have fair baseline functional capacity, yet their age and frailty may compromise their management. We compared the characteristics and management of older (≥ 75&nbsp;years) versus younger adults hospitalized in ICU with hospital-acquired bloodstream infection (HA-BSI). Methods: Nested cohort study within the EUROBACT-2 database, a multinational prospective cohort study including adults (≥ 18&nbsp;years) hospitalized in the ICU during 2019-2021. We compared older versus younger adults in terms of infection characteristics (clinical signs and symptoms, source, and microbiological data), management (imaging, source control, antimicrobial therapy), and outcomes (28-day mortality and hospital discharge). Results: Among 2111 individuals hospitalized in 219 ICUs with HA-BSI, 563 (27%) were ≥ 75&nbsp;years old. Compared to younger patients, these individuals had higher comorbidity score and lower functional capacity; presented more often with a pulmonary, urinary, or unknown HA-BSI source; and had lower heart rate, blood pressure and temperature at presentation. Pathogens and resistance rates were similar in both groups. Differences in management included mainly lower rates of effective source control achievement among aged individuals. Older adults also had significantly higher day-28 mortality (50% versus 34%, p &lt; 0.001), and lower rates of discharge from hospital (12% versus 20%, p &lt; 0.001) by this time. Conclusions: Older adults with HA-BSI hospitalized in ICU have different baseline characteristics and source of infection compared to younger patients. Management of older adults differs mainly by lower probability to achieve source control. This should be targeted to improve outcomes among older ICU patients

    The role of centre and country factors on process and outcome indicators in critically ill patients with hospital-acquired bloodstream infections

    No full text
    Purpose: The primary objective of this study was to evaluate the associations between centre/country-based factors and two important process and outcome indicators in patients with hospital-acquired bloodstream infections (HABSI). Methods: We used data on HABSI from the prospective EUROBACT-2 study to evaluate the associations between centre/country factors on a process or an outcome indicator: adequacy of antimicrobial therapy within the first 24&nbsp;h or 28-day mortality, respectively. Mixed logistical models with clustering by centre identified factors associated with both indicators. Results: Two thousand two hundred nine patients from two hundred one intensive care units (ICUs) were included in forty-seven countries. Overall, 51% (n = 1128) of patients received an adequate antimicrobial therapy and the 28-day mortality was 38% (n = 839). The availability of therapeutic drug monitoring (TDM) for aminoglycosides everyday [odds ratio (OR) 1.48, 95% confidence interval (CI) 1.03-2.14] or within a few hours (OR 1.79, 95% CI 1.34-2.38), surveillance cultures for multidrug-resistant organism carriage performed weekly (OR 1.45, 95% CI 1.09-1.93), and increasing Human Development Index (HDI) values were associated with adequate antimicrobial therapy. The presence of intermediate care beds (OR 0.63, 95% CI 0.47-0.84), TDM for aminoglycoside available everyday (OR 0.66, 95% CI 0.44-1.00) or within a few hours (OR 0.51, 95% CI 0.37-0.70), 24/7 consultation of clinical pharmacists (OR 0.67, 95% CI 0.47-0.95), percentage of vancomycin-resistant enterococci (VRE) between 10% and 25% in the ICU (OR 1.67, 95% CI 1.00-2.80), and decreasing HDI values were associated with 28-day mortality. Conclusion: Centre/country factors should be targeted for future interventions to improve management strategies and outcome of HABSI in ICU patients

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore