8 research outputs found

    Normative equations for central augmentation index:Assessment of inter-population applicability and how it could be improved

    Get PDF
    Common reference values of arterial stiffness indices could be effective screening tool in detecting vascular phenotypes at risk. However, populations of the same ethnicity may differ in vascular phenotype due to different environmental pressure. We examined applicability of normative equations for central augmentation index (cAIx) derived from Danish population with low cardiovascular risk on the corresponding Croatian population from the Mediterranean area. Disagreement between measured and predicted cAIx was assessed by Bland-Altman analysis. Both, cAIx-age distribution and normative equation fitted on Croatian data were highly comparable to Danish low-risk sample. Contrarily, Bland-Altman analysis of cAIx disagreement revealed a curvilinear deviation from the line of full agreement indicating that the equations were not equally applicable across age ranges. Stratification of individual data into age decades eliminated curvilinearity in all but the 30–39 (men) and 40–49 (women) decades. In other decades, linear disagreement independent of age persisted indicating that cAIx determinants other than age were not envisaged/compensated for by proposed equations. Therefore, established normative equations are equally applicable to both Nordic and Mediterranean populations but are of limited use. If designed for narrower age ranges, the equations’ sensitivity in detecting vascular phenotypes at risk and applicability to different populations could be improved

    24-h ambulatory recording of aortic pulse wave velocity and central systolic augmentation: a feasibility study

    No full text
    We assessed the feasibility of ambulatory pulse wave analysis by comparing this approach with an established tonometric technique. We investigated 35 volunteers (45.6 years; 51.0% women) exclusively at rest (R study) and 83 volunteers (49.9 years; 61.4% women) at rest and during daytime (1000-2000 h) ambulatory monitoring (R+A study). We recorded central systolic (cSP), diastolic (cDP) and pulse (cPP) pressures, augmentation index (cAI) and pulse wave velocity (PWV) by brachial oscillometry (Mobil-O-Graph 24h PWA Monitor) and radial tonometry (SphygmoCor). We applied the Bland and Altman's statistics. In the R study, tonometric and oscillometric estimates of cSP (105.6 vs. 106.9 mm Hg), cDP (74.6 vs. 74.7 mm Hg), cPP (31.0 vs. 32.1 mm Hg), cAI (21.1 vs. 20.6%) and PWV (7.3 vs. 7.0 m s(-1)) were similar (P >= 0.11). In the R+A study, tonometric vs. oscillometric assessment yielded similar values for cSP (115.4 vs. 113.9 mm Hg; P=0.19) and cAI (26.5 vs. 25.3%; P=0.54), but lower cDP (77.8 vs. 81.9 mm Hg; P= 0.17) with cDP (r=0.15) or cPP (r=0.13). Irrespective of measurement conditions, brachial oscillometry compared with an established tonometric method provided similar estimates for cSP and systolic augmentation, but slightly underestimated PWV. Pending further validation, ambulatory assessment of central hemodynamic variables is feasible. Hypertension Research (2012) 35, 980-987; doi:10.1038/hr.2012.78; published online 24 May 201
    corecore