9 research outputs found
Modeling long-term dynamics of carbon and nitrogen in intensive rice-based cropping systems in the Indo-Gangetic Plains (India)
Soil organic matter (SOM) is an essential component of any sustainable crop production system, both as a nutrient source for the crop and a physical conditioner for the soil. Land use systems based on (flooded) rice- aerobic upland crop rotations, with their annual cycles of wet and dry soil conditions, puddling and plowing, are unique in their influence on SOM dynamics. Recent reports have related yield 'stagnation' in rice-wheat systems in parts of the Indo-Gangetic Plains (IGP) to a decline in SOM quantity and quality. For exploration of the long-term effects of intensive cultivation on soil C and N dynamics, and the consequences for crop yields, a summary model has been developed, based on insights in the underlying processes, to investigate the role of soil organic matter in yield formation in rice-based cropping systems in the IGP and to identify possible reasons for declining yields in the region.Following a review of existing SOM models with emphasis on approaches and principles, to identify processes relevant for long-term dynamics of C and N in rice-based cropping systems, the different components of the systems (SOM and crop) were investigated. A simple analytical model (Yang's model) used to analyze soil carbon balances for different sites in the IGP, showed that carbon demand to maintain soil organic carbon (SOC) levels depends on their initial level, and SOC dynamics are governed by crop performance, determining the rate of carbon input into a soil, and the carbon input through organic amendments. A crop growth model (LINTUL3) was developed describing crop growth of rice for N-limited situations. Nitrogen stress in the model is quantified through the nitrogen nutrition index, a measure of relative crop (leaf and stem) nitrogen content. Subsequently, the knowledge was integrated into a summary model, comprising three modules: a soil organic matter (SOM) module, a soil (SOIL) module, and a crop growth (CROP) module. SOM in the model comprises three pools: fresh, labile and stable. Carbon and nitrogen dynamics in the model are described in terms of carbon turnover, assimilation and dissimilation, with nitrogen linked through distinct C/N ratios. Turnover of fresh SOM depends on substrate composition. Maximum relative turnover rates of the labile and stable pools are pool-specific and actual rates are influenced by environmental (temperature, moisture, texture, pH) and management (tillage and puddling) factors. Data sets of nine long-term experiments from the IGP of India were used to calibrate and validate the model. In general, the model satisfactorily reproduced observed crop yields, SOC dynamics and total soil N dynamics for various cropping systems at different sites. With recommended fertilizer NPK applications, a significant decline in yield was found only at two sites: Ludhiana-3 and Pantnagar. Nitrogen mineralized from soil organic matter contributed 20-80% to total N uptake for different treatments. The model results show that an increase in SOM is not always associated with an increase in yield, as the factor(s) improved by an increase in SOM may not be the limiting factor for crop growth. The study concludes that SOM is not always a direct measure of a soil's nitrogen supplying capacity and the importance of SOM as a nutrient source for the crop depends on the relative contribution of other N sources. This suggests that SOM dynamics are not the sole reason for observed yield stagnation
Long-term dynamics of soil C and N in intensive rice-based cropping systems of the Indo-Gangetic Plains (IGP): A modelling approach
We describe a summary model for the dynamics of carbon and nitrogen under varying weather, crop and soil conditions to investigate the role of soil organic carbon and nitrogen in yield formation in rice-based cropping systems of the Indo-Gangetic Plains (IGP). The model consists of three modules: soil organic matter (SOM), soil (SOIL), and crop growth (CROP). The SOM module consists of three pools: fresh, labile and stable. Carbon and nitrogen dynamics in the model are described in terms of carbon turnover, assimilation and dissimilation, with nitrogen linked through distinct C/N ratios. The SOIL module has two soil layers of variable depth (often 15 cm each), and the labile and stable pools are replicated for these two layers. Water, crop and soil management practices and aeration characteristics of these layers affect the C and N dynamics of their respective pools. The CROP module calculates potential and actual biomass, leaf area index (LAI), evapotranspiration, total N demand, actual N uptake and N stress. Actual biomass is first partitioned between above (leaves, stem and storage organs) and below ground (roots and rhizodeposition), and a harvest index (HI) is applied to the aboveground biomass to calculate the yield. Independent data sets of 9 long-term experiments (LTEs) from the IGP of India were used for calibration and validation of the model. After calibration and validation, the model was used to explore the impact of various crop and soil management practices in rice-based cropping systems on different sites of the IGP. Overall, the model satisfactorily reproduced observed crop yields, SOC dynamics and total soil N dynamics for various cropping systems at different sites. Nitrogen mineralized from soil organic nitrogen contributed 5–75% to total N uptake in fertilized and non-fertilized treatments. With a recommended NPK application, a trend of significant decrease in simulated rice yield was found only at Ludhiana-3, and Pantnagar. Similarly, the simulated wheat yield also showed a significant trend of decline at Ludhina-3, Pantnagar and Barrackpore. Simulated SOC had a significant decline at Pantnagar, whereas at Ludhiana-3, it showed a significant increase. An increase in SOM is not always associated with an increase in yield, as the factor(s) improved by an increase in SOM may not be the limiting factor for crop growth. Depletion of many major macro (NPK) and micro (Zn, Fe, Mn, etc.) nutrients, essential for plant growth even with a balanced NPK fertilizer application and a maintained SOC, can lead to a decline in productivity. -------------------------------------------------------------------------------
Long-term dynamics of soil C and N in intensive rice-based cropping systems of the Indo-Gangetic Plains (IGP): A modelling approach
We describe a summary model for the dynamics of carbon and nitrogen under varying weather, crop and soil conditions to investigate the role of soil organic carbon and nitrogen in yield formation in rice-based cropping systems of the Indo-Gangetic Plains (IGP). The model consists of three modules: soil organic matter (SOM), soil (SOIL), and crop growth (CROP). The SOM module consists of three pools: fresh, labile and stable. Carbon and nitrogen dynamics in the model are described in terms of carbon turnover, assimilation and dissimilation, with nitrogen linked through distinct C/N ratios. The SOIL module has two soil layers of variable depth (often 15 cm each), and the labile and stable pools are replicated for these two layers. Water, crop and soil management practices and aeration characteristics of these layers affect the C and N dynamics of their respective pools. The CROP module calculates potential and actual biomass, leaf area index (LAI), evapotranspiration, total N demand, actual N uptake and N stress. Actual biomass is first partitioned between above (leaves, stem and storage organs) and below ground (roots and rhizodeposition), and a harvest index (HI) is applied to the aboveground biomass to calculate the yield. Independent data sets of 9 long-term experiments (LTEs) from the IGP of India were used for calibration and validation of the model. After calibration and validation, the model was used to explore the impact of various crop and soil management practices in rice-based cropping systems on different sites of the IGP. Overall, the model satisfactorily reproduced observed crop yields, SOC dynamics and total soil N dynamics for various cropping systems at different sites. Nitrogen mineralized from soil organic nitrogen contributed 5–75% to total N uptake in fertilized and non-fertilized treatments. With a recommended NPK application, a trend of significant decrease in simulated rice yield was found only at Ludhiana-3, and Pantnagar. Similarly, the simulated wheat yield also showed a significant trend of decline at Ludhina-3, Pantnagar and Barrackpore. Simulated SOC had a significant decline at Pantnagar, whereas at Ludhiana-3, it showed a significant increase. An increase in SOM is not always associated with an increase in yield, as the factor(s) improved by an increase in SOM may not be the limiting factor for crop growth. Depletion of many major macro (NPK) and micro (Zn, Fe, Mn, etc.) nutrients, essential for plant growth even with a balanced NPK fertilizer application and a maintained SOC, can lead to a decline in productivity. -------------------------------------------------------------------------------
Long-term dynamics of soil C and N in intensive rice-based cropping systems of the Indo-Gangetic Plains (IGP): A modelling approach
We describe a summary model for the dynamics of carbon and nitrogen under varying weather, crop and soil conditions to investigate the role of soil organic carbon and nitrogen in yield formation in rice-based cropping systems of the Indo-Gangetic Plains (IGP). The model consists of three modules: soil organic matter (SOM), soil (SOIL), and crop growth (CROP). The SOM module consists of three pools: fresh, labile and stable. Carbon and nitrogen dynamics in the model are described in terms of carbon turnover, assimilation and dissimilation, with nitrogen linked through distinct C/N ratios. The SOIL module has two soil layers of variable depth (often 15 cm each), and the labile and stable pools are replicated for these two layers. Water, crop and soil management practices and aeration characteristics of these layers affect the C and N dynamics of their respective pools. The CROP module calculates potential and actual biomass, leaf area index (LAI), evapotranspiration, total N demand, actual N uptake and N stress. Actual biomass is first partitioned between above (leaves, stem and storage organs) and below ground (roots and rhizodeposition), and a harvest index (HI) is applied to the aboveground biomass to calculate the yield. Independent data sets of 9 long-term experiments (LTEs) from the IGP of India were used for calibration and validation of the model. After calibration and validation, the model was used to explore the impact of various crop and soil management practices in rice-based cropping systems on different sites of the IGP. Overall, the model satisfactorily reproduced observed crop yields, SOC dynamics and total soil N dynamics for various cropping systems at different sites. Nitrogen mineralized from soil organic nitrogen contributed 5–75% to total N uptake in fertilized and non-fertilized treatments. With a recommended NPK application, a trend of significant decrease in simulated rice yield was found only at Ludhiana-3, and Pantnagar. Similarly, the simulated wheat yield also showed a significant trend of decline at Ludhina-3, Pantnagar and Barrackpore. Simulated SOC had a significant decline at Pantnagar, whereas at Ludhiana-3, it showed a significant increase. An increase in SOM is not always associated with an increase in yield, as the factor(s) improved by an increase in SOM may not be the limiting factor for crop growth. Depletion of many major macro (NPK) and micro (Zn, Fe, Mn, etc.) nutrients, essential for plant growth even with a balanced NPK fertilizer application and a maintained SOC, can lead to a decline in productivity. -------------------------------------------------------------------------------
Soil carbon balance of rice-based cropping systems of the Indo-Gangetic Plains
An agricultural land use system centred on rice-based cropping systems as common in the Indo-Gangetic Plains (IGP), with its annual cycles of wet and dry, puddling and ploughing, is unique and exerts a specific influence on soil organic matter (SOM) dynamics. Reports of yield ‘stagnation’ in some parts of the IGP with a decline in SOM quantity and quality raises concerns about the sustainability of the rice–wheat system in the region. Proper understanding of the soil carbon balance and of measures required to build up or maintain the soil carbon status of such a production system is therefore important for its sustainable production. Long-term experiments conducted in this region are especially useful in gaining understanding of soil carbon dynamics, since the processes affecting carbon dynamics are slow in nature. We used a simple analytical model—Yang's model—to calculate carbon balances in the rice-based cropping systems of the IGP in India. We used eight data sets from rice-based cropping systems from different sub-regions in the IGP, with different crop managements applied to rice, wheat or a third crop. Carbon input into the soil from crop biomass was calculated using data on crop yield and Harvest Index (HI). The values of soil organic carbon content predicted by the model were comparable to the observed values (r = 0.91). The model performs well in situations with porous soils (low clay content), with a pH values in the neutral range (7–7.5) and low annual rainfall as in the situation of Ludhiana-1 and 2. However, it underperforms in situations with heavy clay soils with high rainfall, causing severe anaerobic conditions. The model projections for the long-term (by 2080) show a decline in SOC at all sites in the IGP. Hence, the yield stagnation in the IGP, which has been attributed to a decline in SOC and the associated reduction in nutrient supply, could lead to further decreases in SOC levels, aggravated by climate change-induced higher temperatures
Soil carbon balance of rice-based cropping systems of the Indo-Gangetic Plains
An agricultural land use system centred on rice-based cropping systems as common in the Indo-Gangetic Plains (IGP), with its annual cycles of wet and dry, puddling and ploughing, is unique and exerts a specific influence on soil organic matter (SOM) dynamics. Reports of yield ‘stagnation’ in some parts of the IGP with a decline in SOM quantity and quality raises concerns about the sustainability of the rice–wheat system in the region. Proper understanding of the soil carbon balance and of measures required to build up or maintain the soil carbon status of such a production system is therefore important for its sustainable production. Long-term experiments conducted in this region are especially useful in gaining understanding of soil carbon dynamics, since the processes affecting carbon dynamics are slow in nature. We used a simple analytical model—Yang's model—to calculate carbon balances in the rice-based cropping systems of the IGP in India. We used eight data sets from rice-based cropping systems from different sub-regions in the IGP, with different crop managements applied to rice, wheat or a third crop. Carbon input into the soil from crop biomass was calculated using data on crop yield and Harvest Index (HI). The values of soil organic carbon content predicted by the model were comparable to the observed values (r = 0.91). The model performs well in situations with porous soils (low clay content), with a pH values in the neutral range (7–7.5) and low annual rainfall as in the situation of Ludhiana-1 and 2. However, it underperforms in situations with heavy clay soils with high rainfall, causing severe anaerobic conditions. The model projections for the long-term (by 2080) show a decline in SOC at all sites in the IGP. Hence, the yield stagnation in the IGP, which has been attributed to a decline in SOC and the associated reduction in nutrient supply, could lead to further decreases in SOC levels, aggravated by climate change-induced higher temperatures
LINTUL3, a simulation model for nitrogen-limited situations: Application to rice
LINTUL3 is a crop model that calculates biomass production based on intercepted photosynthetically active radiation (PAR) and light use efficiency (LUE). It is an adapted version of LINTUL2 (that simulates potential and water-limited crop growth), including nitrogen limitation. Nitrogen stress in the model is defined through the nitrogen nutrition index (NNI): the ratio of actual nitrogen concentration and critical nitrogen concentration in the plant. The effect of nitrogen stress on crop growth is tested in the model either through a reduction in LUE or leaf area (LA) or a combination of these two and further evaluated with independent datasets. However, water limitation is not considered in the present study as the crop is paddy rice. This paper describes the model for the case of rice, test the hypotheses of N stress on crop growth and details of model calibration and testing using independent data sets of nitrogen treatments (with fertilizer rates of 0–400 kg N ha-1) under varying environmental conditions in Asia. Results of calibration and testing are compared graphically, through Root Mean Square Deviation (RMSD), and by Average Absolute Deviation (AAD). Overall average absolute deviation values for calibration and testing of total aboveground biomass show less than 26% mean deviation from the observations though the values for individual experiments show a higher deviation up to 41%. In general, the model responded well to nitrogen stress in all the treatments without fertilizer application as observed, but between fertilized treatments the response was varying