5,748 research outputs found

    Josephson Plasma in RuSr2GdCu2O8

    Full text link
    Josephson plasma in RuSr2_{2}GdCu2_{2}O8_{8}, Ru1−x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), and RuSr2_{2}Eu2−x_{2-x}Cex_{x}Cu2_{2}O10_{10} (x = 0.5) compounds is investigated by the sphere resonance method. The Josephson plasma is observed in a low-frequency region (around 8.5 cm−1^{-1} at T ≪\ll TcT_{c}) for ferromagnetic RuSr2_{2}GdCu2_{2}O8_{8}, while it increases to 35 cm−1^{-1} for non-ferromagnetic Ru1−x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), which represents a large reduction in the Josephson coupling at ferromagnetic RuO2_{2} block layers. The temperature dependence of the plasma does not shift to zero frequency ({\it i.e.} jcj_{c} = 0) at low temperatures, indicating that there is no transition from the 0-phase to the π\pi-phase in these compounds. The temperature dependence and the oscillator strength of the peak are different from those of other non-magnetic cuprates, and the origins of these anomalies are discussed.Comment: to appear in Phys. Rev.B Rapid Com

    Measurement by FIB on the ISS: Two Emissions of Solar Neutrons Detected?

    Get PDF
    A new type of solar neutron detector (FIB) was launched onboard the Space Shuttle Endeavour on July 16, 2009, and it began collecting data at the International Space Station (ISS) on August 25, 2009. This paper summarizes the three years of observations obtained by the solar neutron detector FIB until the end of July 2012. The solar neutron detector FIB can determine both the energy and arrival direction of neutrons. We measured the energy spectra of background neutrons over the SAA region and elsewhere, and found the typical trigger rates to be 20 counts/sec and 0.22 counts/sec, respectively. It is possible to identify solar neutrons to within a level of 0.028 counts/sec, provided that directional information is applied. Solar neutrons were observed in association with the M-class solar flares that occurred on March 7 (M3.7) and June 7 (M2.5) of 2011. This marked the first time that neutrons were observed in M-class solar flares. A possible interpretaion of the prodcution process is provided.Comment: 36 pages, 16 figures, and 3 Tables; Advanced in Astronmy, 2012, Special issue on Cosmic Ray Variablity:Century of Its Obseravtion

    Magnetospheres of black hole-neutron star binaries

    Get PDF
    We perform force-free simulations for a neutron star orbiting a black hole, aiming at clarifying the main magnetosphere properties of such binaries towards their innermost stable circular orbits. Several configurations are explored, varying the orbital separation, the individual spins and misalignment angle among the magnetic and orbital axes. We find significant electromagnetic luminosities, L∼1042−46 [Bpole/1012G]2 erg/sL\sim 10^{42-46} \, [B_{\rm pole}/ 10^{12}{\rm G}]^2 \, {\rm erg/s} (depending on the specific setting), primarily powered by the orbital kinetic energy, being about one order of magnitude higher than those expected from unipolar induction. The systems typically develop current sheets that extend to long distances following a spiral arm structure. The intense curvature of the black hole produces extreme bending on a particular set of magnetic field lines as it moves along the orbit, leading to magnetic reconnections in the vicinity of the horizon. For the most symmetric scenario (aligned cases), these reconnection events can release large-scale plasmoids that carry the majority of the Poynting fluxes. On the other hand, for misaligned cases, a larger fraction of the luminosity is instead carried outwards by large-amplitude Alfv{\'e}n waves disturbances. We estimate possible precursor electromagnetic emissions based on our numerical solutions, finding radio signals as the most promising candidates to be detectable within distances of ≲200\lesssim 200\,Mpc by forthcoming facilities like the Square Kilometer Array

    Real Space Effective Interaction and Phase Transition in the Lowest Landau Level

    Full text link
    The transition between the stripe state and the liquid state in a high magnetic field is studied by the density-matrix renormalization-group (DMRG) method. Systematic analysis on the ground state of two-dimensional electrons in the lowest Landau level shows that the transition from the stripe state to the liquid state at v=3/8 is caused by a reduction of repulsive interaction around r=3. The same reduction of the interaction also stabilizes the incompressible liquid states at v=1/3 and 2/5, which shows a similarity between the two liquid states at v=3/8 and 1/3. It is also shown that the strong short-range interaction around r=1 in the lowest Landau level makes qualitatively different stripe correlations compared with that in higher Landau levels.Comment: 5 pages, to appear in J. Phys. Soc. Jpn. Vol.73, No.8 (2004

    Dynamic correlations in doped 1D Kondo insulator: Finite-T DMRG study

    Full text link
    The finite-T DMRG method is applied to the one-dimensional Kondo lattice model to calculate dynamic correlation functions. Dynamic spin and charge correlations, S_f(omega), S_c(omega), and N_c(omega), and quasiparticle density of states rho(omega) are calculated in the paramagnetic metallic phase for various temperatures and hole densities. Near half filling, it is shown that a pseudogap grows in these dynamic correlation functions below the crossover temperature characterized by the spin gap at half filling. A sharp peak at omega=0 evolves at low temperatures in S_f(omega) and N_c(omega). This may be an evidence of the formation of the collective excitations, and this confirms that the metallic phase is a Tomonaga-Luttinger liquid in the low temperature limit.Comment: 5 pages, 6 Postscript figures, REVTe

    Towards a Realistic Neutron Star Binary Inspiral: Initial Data and Multiple Orbit Evolution in Full General Relativity

    Full text link
    This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity. We analyze under what conditions the conformally flat quasiequilibrium (CFQE) approach can generate ``astrophysically relevant'' initial data, by developing an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations nearly double that of the innermost stable circular orbit (ISCO) separation, thus calling into question the astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and analyze the stringent requirements on resolution and size of the computational domain for an accurate simulation of the system.Comment: 22 pages, 18 figures, accepted to Phys. Rev.

    Application of spherical substrate to observe bacterial motility machineries by Quick-Freeze-Replica Electron Microscopy

    Get PDF
    3-D Structural information is essential to elucidate the molecular mechanisms of various biological machineries. Quick-Freeze Deep-Etch-Replica Electron Microscopy is a unique technique to give very high-contrast surface profiles of extra- and intra-cellular apparatuses that bear numerous cellular functions. Though the global architecture of those machineries is primarily required to understand their functional features, it is difficult or even impossible to depict side- or highly-oblique views of the same targets by usual goniometry, inasmuch as the objects (e.g. motile microorganisms) are placed on conventional flat substrates. We introduced silica-beads as an alternative substrate to solve such crucial issue. Elongated Flavobacterium and globular Mycoplasmas cells glided regularly along the bead\u27s surface, similarly to those on a flat substrate. Quick-freeze replicas of those cells attached to the beads showed various views; side-, oblique- and frontal-views, enabling us to study not only global but potentially more detailed morphology of complicated architecture. Adhesion of the targets to the convex surface could give surplus merits to visualizing intriguing molecular assemblies within the cells, which is relevant to a variety of motility machinery of microorganisms

    Thomson Scattering of Coherent Diffraction Radiation by an Electron Bunch

    Get PDF
    The paper considers the process of Thomson scattering of coherent diffraction radiation (CDR) produced by the preceding bunch of the accelerator on one of the following bunches. It is shown that the yield of scattered hard photons is proportional to Ne3_e^3, where Ne_e is the number of electrons per bunch. A geometry is chosen for the CDR generation and an expression is obtained for the scattered photon spectrum with regard to the geometry used, that depends in an explicit form on the bunch size. A technique is proposed for measuring the bunch length using scattered radiation characteristics.Comment: 14 pages, LATEX, 6 ps.gz figures, submitted to Phys.Rev.
    • …
    corecore