95 research outputs found

    Potential of Resveratrol Analogues as Antagonists of Osteoclasts and Promoters of Osteoblasts

    Get PDF
    The plant phytoalexin resveratrol was previously demonstrated to inhibit the differentiation and bone resorbing activity of osteoclasts, to promote the formation of osteoblasts from mesenchymal precursors in cultures, and inhibit myeloma cell proliferation, when used at high concentrations. In the current study, we screened five structurally modified resveratrol analogues for their ability to modify the differentiation of osteoclasts and osteoblasts and proliferation of myeloma cells. Compared to resveratrol, analogues showed an up to 5,000-fold increased potency to inhibit osteoclast differentiation. To a lesser extent, resveratrol analogues also promoted osteoblast maturation. However, they did not antagonize the proliferation of myeloma cells. The potency of the best-performing candidate in vitro was tested in vivo in an ovariectomy-induced model of osteoporosis, but an effect on bone loss could not be detected. Based on their powerful antiresorptive activity in vitro, resveratrol analogues might be attractive modulators of bone remodeling. However, further studies are required to establish their efficacy in vivo

    Heterozygous Yeast Deletion Collection Screens Reveal Essential Targets of Hsp90

    Get PDF
    Hsp90 is an essential eukaryotic chaperone with a role in folding specific “client” proteins such as kinases and hormone receptors. Previously performed homozygous diploid yeast deletion collection screens uncovered broad requirements for Hsp90 in cellular transport and cell cycle progression. These screens also revealed that the requisite cellular functions of Hsp90 change with growth temperature. We present here for the first time the results of heterozygous deletion collection screens conducted at the hypothermic stress temperature of 15°C. Extensive bioinformatic analyses were performed on the resulting data in combination with data from homozygous and heterozygous screens previously conducted at normal (30°C) and hyperthermic stress (37°C) growth temperatures. Our resulting meta-analysis uncovered extensive connections between Hsp90 and (1) general transcription, (2) ribosome biogenesis and (3) GTP binding proteins. Predictions from bioinformatic analyses were tested experimentally, supporting a role for Hsp90 in ribosome stability. Importantly, the integrated analysis of the 15°C heterozygous deletion pool screen with previously conducted 30°C and 37°C screens allows for essential genetic targets of Hsp90 to emerge. Altogether, these novel contributions enable a more complete picture of essential Hsp90 functions

    delta-L-(alpha-aminoadipoyl)-L-cysteinyl-D-valine synthetase: the order of peptide bond formation and timing of the epimerisation reaction.

    Get PDF
    delta-L-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine (ACV) synthetase catalyses the formation of the common precursor tripeptide of both the penicillin and cephalosporin antibiotics from the L-enantiomers of its constituent amino acids. Replacement of cysteine with L-O-methylserine in preparative-scale incubations led to the isolation of both L-O-methylserinyl-L-valine and L-O-methylserinyl-D-valine dipeptides. The dipeptides were characterized with the aid of authentic synthetic standards by both 1H NMR and electrospray ionization MS. A revised mechanism for ACV biosynthesis involving formation of the cysteinyl-valine peptide bond before the epimerisation of valine and subsequent condensation with the delta-carboxyl of L-alpha-aminoadipate is therefore proposed

    L-delta-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine synthetase: thioesterification of valine is not obligatory for peptide bond formation.

    No full text
    L-delta-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine (ACV) synthetase is probably the simplest known peptide synthetase in terms of the number of reactions catalyzed. In the "thiol-template" proposal for nonribosomal peptide synthesis, a key step is transfer of aminoacyl groups derived from the substrates to enzyme-bound thiols prior to peptide bond formation. No incorporation of 18O was seen in AMP isolated from the reaction mixture when di[18O]valine was incubated with relatively large amounts of active synthetase and MgATP. We therefore utilized di[18O]valine as a substrate for the biosynthesis of the diastereomeric dipeptides L-O-(methylserinyl)-L-valine and L-O-(methylserinyl)-D-valine [Shiau, C.-Y., Baldwin, J. E., Byford, M. F., Sobey, W. J., and Schofield, C. J. (1995) FEBS Lett. 358, 97-100]. In the L-O-(methylserinyl)-L-valine product, no significant loss of 18O was observed. However, in the L-O-(methylserinyl)-D-valine product, a significant loss of one or both 18O labels was observed. Thus, both peptide bond formation and the epimerization of the valine residue can both occur before formation of any thioester bond to the valine carboxylate in the biosynthesis of these dipeptides. The usual qualitative test for thioesterification of substrates to the synthetase, lability of enzyme-bound radiolabeled amino acid to performic acid, proved inconclusive in our hands. These results require a new mechanism for the enzymic synthesis of L-O-(methylserinyl)-L-valine and L-O-(methylserinyl)-D-valine and imply that a revised mechanism for ACV synthesis is also required

    Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells

    No full text
    Cheng-Wei Chen1, Da-Wen Lu2, Ming-Kung Yeh3, Chia-Yang Shiau4, Chiao-Hsi Chiang1,5 1Graduate Institute of Life Sciences, 2Department of Ophthalmology, Tri-Service General Hospital, 3Institution of Preventive Medicine, 4Graduate Institute of Medical Sciences, 5School of Pharmacy, National Defense Medical Center, Neihu, Taipei, Taiwan Background: Human retinal pigment epithelial cells are promising target sites for small interfering RNA (siRNA) that might be used for the prevention and/or treatment of choroidal neovascularization by inhibiting the expression of angiogenic factor; for example, by downregulating expression of the vascular endothelial growth factor gene. Methods: A novel functional lipid, DSPE-PEG-RGD, a Arg(R)-Gly(G)-Asp(D) motif peptide conjugated to 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine- N-[maleimide (polyethylene glycol)-2000], was synthesized for the preparation of siRNA-loaded RGD-PEGylated liposomes to enhance uptake of encapsulated siRNA in retinal pigment epithelial cells. Various liposomes, with 1 mol% and 5 mol% PEGylated lipid or 1 mol% and 5 mol% RGD-PEGylated lipid, were fabricated. Results: Characterization of the liposomes, including siRNA entrapment efficiency, average particle size and ζ-potential, were determined to be as follows: >96%, 129.7 ± 51 to 230.7 ± 60.7 nm, and 17.3 ± 0.6 to 32 ± 1.3 mV, respectively. For the in vitro retinal pigment epithelial cell studies, the RGD-PEGylated liposomes had high delivery efficiency with siRNA delivery, about a four-fold increase compared with the PEGylated liposomes. Comparison of the various liposomes showed that the 1 mol% RGD-modified liposome had less cytotoxicity and higher siRNA delivery efficiency than the other liposomes. The antibody blocking assay confirmed that uptake of the 1 mol% RGD-PEGylated liposome was via integrin receptor-mediated endocytosis in retinal pigment epithelial cells. Conclusion: The results of this study suggest that RGD-PEGylated liposomes might be useful for siRNA delivery into retinal pigment epithelial cells by integrin receptor-medicated endocytosis. Keywords: Arg-Gly-Asp, RGD, small interfering RNA, liposome, retinal pigment epithelial cell
    corecore