6 research outputs found

    Initial Clinical Experience of MR-Guided Radiotherapy for Non-Small Cell Lung Cancer.

    Get PDF
    Curative-intent radiotherapy plays an integral role in the treatment of lung cancer and therefore improving its therapeutic index is vital. MR guided radiotherapy (MRgRT) systems are the latest technological advance which may help with achieving this aim. The majority of MRgRT treatments delivered to date have been stereotactic body radiation therapy (SBRT) based and include the treatment of (ultra-) central tumors. However, there is a move to also implement MRgRT as curative-intent treatment for patients with inoperable locally advanced NSCLC. This paper presents the initial clinical experience of using the two commercially available systems to date: the ViewRay MRIdian and Elekta Unity. The challenges and potential solutions associated with MRgRT in lung cancer will also be highlighted

    Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula

    No full text
    Background and Purpose: 4D and midposition MRI could inform plan adaptation in lung and abdominal MR-guided radiotherapy. We present deep learning-based solutions to overcome long 4D-MRI reconstruction times while maintaining high image quality and short scan times. Methods: Two 3D U-net deep convolutional neural networks were trained to accelerate the 4D joint MoCo-HDTV reconstruction. For the first network, gridded and joint MoCo-HDTV-reconstructed 4D-MRI were used as input and target data, respectively, whereas the second network was trained to directly calculate the midposition image. For both networks, input and target data had dimensions of 256 × 256 voxels (2D) and 16 respiratory phases. Deep learning-based MRI were verified against joint MoCo-HDTV-reconstructed MRI using the structural similarity index (SSIM) and the naturalness image quality evaluator (NIQE). Moreover, two experienced observers contoured the gross tumour volume and scored the images in a blinded study. Results: For 12 subjects, previously unseen by the networks, high-quality 4D and midposition MRI (1.25 × 1.25 × 3.3 mm3) were each reconstructed from gridded images in only 28 seconds per subject. Excellent agreement was found between deep-learning-based and joint MoCo-HDTV-reconstructed MRI (average SSIM ≥ 0.96, NIQE scores 7.94 and 5.66). Deep-learning-based 4D-MRI were clinically acceptable for target and organ-at-risk delineation. Tumour positions agreed within 0.7 mm on midposition images. Conclusion: Our results suggest that the joint MoCo-HDTV and midposition algorithms can each be approximated by a deep convolutional neural network. This rapid reconstruction of 4D and midposition MRI facilitates online treatment adaptation in thoracic or abdominal MR-guided radiotherapy
    corecore