962 research outputs found

    Searching for Moving Objects in HSC-SSP: Pipeline and Preliminary Results

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is currently the deepest wide- field survey in progress. The 8.2 m aperture of Subaru telescope is very powerful in detect- ing faint/small moving objects, including near-Earth objects, asteroids, centaurs and Tran- Neptunian objects (TNOs). However, the cadence and dithering pattern of the HSC-SSP are not designed for detecting moving objects, making it difficult to do so systematically. In this paper, we introduce a new pipeline for detecting moving objects (specifically TNOs) in a non-dedicated survey. The HSC-SSP catalogs are re-arranged into the HEALPix architecture. Then, the stationary detections and false positive are removed with a machine learning al- gorithm to produce a list of moving object candidates. An orbit linking algorithm and visual inspections are executed to generate the final list of detected TNOs. The preliminary results of a search for TNOs using this new pipeline on data from the first HSC-SSP data release (Mar 2014 to Nov 2015) are also presented.Comment: 32 pages, 10 figures, 2 tables, submitted to HSC special issue in PAS

    Tequila Regulates Insulin-Like Signaling and Extends Life Span in Drosophila melanogaster

    Get PDF
    The aging process is a universal phenomenon shared by all living organisms. The identification of longevity genes is important in that the study of these genes is likely to yield significant insights into human senescence. In this study, we have identified Tequila as a novel candidate gene involved in the regulation of longevity in Drosophila melanogaster. We have found that a hypomorphic mutation of Tequila (Teq(f01792)), as well as cell-specific downregulation of Tequila in insulin-producing neurons of the fly, significantly extends life span. Tequila deficiency-induced life-span extension is likely to be associated with reduced insulin-like signaling, because Tequila mutant flies display several common phenotypes of insulin dysregulation, including reduced circulating Drosophila insulin-like peptide 2 (Dilp2), reduced Akt phosphorylation, reduced body size, and altered glucose homeostasis. These observations suggest that Tequila may confer life-span extension by acting as a modulator of Drosophila insulin-like signaling

    Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus~III

    Full text link
    We present the results from a search for new Milky Way (MW) satellites from the first two years of data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) 300\sim 300~deg2^2 and report the discovery of a highly compelling ultra-faint dwarf galaxy candidate in Cetus. This is the second ultra-faint dwarf we have discovered after Virgo~I reported in our previous paper. This satellite, Cetus~III, has been identified as a statistically significant (10.7σ\sigma) spatial overdensity of star-like objects, which are selected from a relevant isochrone filter designed for a metal-poor and old stellar population. This stellar system is located at a heliocentric distance of 25111+24^{+24}_{-11}~kpc with a most likely absolute magnitude of MV=2.4±0.6M_V = -2.4 \pm 0.6~mag estimated from a Monte Carlo analysis. Cetus~III is extended with a half-light radius of rh=9017+42r_h = 90^{+42}_{-17}~pc, suggesting that this is a faint dwarf satellite in the MW located beyond the detection limit of the Sloan Digital Sky Survey. Further spectroscopic studies are needed to assess the nature of this stellar system. We also revisit and update the parameters for Virgo~I finding MV=0.330.87+0.75M_V = -0.33^{+0.75}_{-0.87}~mag and rh=4713+19r_h = 47^{+19}_{-13}~pc. Using simulations of Λ\Lambda-dominated cold dark matter models, we predict that we should find one or two new MW satellites from 300\sim 300~deg2^2 HSC-SSP data, in rough agreement with the discovery rate so far. The further survey and completion of HSC-SSP over 1,400\sim 1,400~deg2^2 will provide robust insights into the missing satellites problem.Comment: 12 pages, 12 figures, accepted for publication in PASJ special issu

    Col-OSSOS: Colors of the Interstellar Planetesimal 1I/`Oumuamua

    Get PDF
    The recent discovery by Pan-STARRS1 of 1I/2017 U1 (`Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars, and the effect of the interstellar environment on a planetesimal surface. 1I/`Oumuamua's close encounter with the inner Solar System in 2017 October was a unique chance to make observations matching those used to characterize the small-body populations of our own Solar System. We present near-simultaneous g^\prime, r^\prime, and J photometry and colors of 1I/`Oumuamua from the 8.1-m Frederick C. Gillett Gemini North Telescope, and grigri photometry from the 4.2 m William Herschel Telescope. Our g^\primer^\primeJ observations are directly comparable to those from the high-precision Colours of the Outer Solar System Origins Survey (Col-OSSOS), which offer unique diagnostic information for distinguishing between outer Solar System surfaces. The J-band data also provide the highest signal-to-noise measurements made of 1I/`Oumuamua in the near-infrared. Substantial, correlated near-infrared and optical variability is present, with the same trend in both near-infrared and optical. Our observations are consistent with 1I/`Oumuamua rotating with a double-peaked period of 8.10±0.428.10 \pm 0.42 hours and being a highly elongated body with an axial ratio of at least 5.3:1, implying that it has significant internal cohesion. The color of the first interstellar planetesimal is at the neutral end of the range of Solar System grg-r and rJr-J solar-reflectance colors: it is like that of some dynamically excited objects in the Kuiper belt and the less-red Jupiter Trojans.Comment: Accepted to ApJ

    Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    Get PDF
    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10um. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5um error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of PSF. Carbon fiber tubes are used to provide a stable structure over the operating conditions without focus adjustments. The CMOS sensor can be read in 0.8s to reduce the overhead for the fiber configuration. The positions of all fibers can be obtained within 0.5s after the readout of the frame. This enables the overall fiber configuration to be less than 2 minutes. MCS will be installed inside a standard Subaru Cassgrain Box. All components that generate heat are located inside a glycol cooled cabinet to reduce the possible image motion due to heat. The optics and camera for MCS have been delivered and tested. The mechanical parts and supporting structure are ready as of spring 2016. The integration of MCS will start in the summer of 2016.Comment: 11 pages, 15 figures. SPIE proceeding. arXiv admin note: text overlap with arXiv:1408.287
    corecore