8,766 research outputs found

    Between realism and abstraction

    Get PDF
    Not Include

    Maximal violation of Clauser-Horne-Shimony-Holt inequality for four-level systems

    Full text link
    Clauser-Horne-Shimony-Holt inequality for bipartite systems of 4-dimension is studied in detail by employing the unbiased eight-port beam splitters measurements. The uniform formulae for the maximum and minimum values of this inequality for such measurements are obtained. Based on these formulae, we show that an optimal non-maximally entangled state is about 6% more resistant to noise than the maximally entangled one. We also give the optimal state and the optimal angles which are important for experimental realization.Comment: 7 pages, three table

    Sharp modulus of continuity for parabolic equations on manifolds and lower bounds for the first eigenvalue

    Get PDF
    We derive sharp estimates on modulus of continuity for solutions of the heat equation on a compact Riemannian manifold with a Ricci curvature bound, in terms of initial oscillation and elapsed time. As an application, we give an easy proof of the optimal lower bound on the first eigenvalue of the Laplacian on such a manifold as a function of diameter

    A Privacy-Preserving Finite-Time Push-Sum based Gradient Method for Distributed Optimization over Digraphs

    Full text link
    This paper addresses the problem of distributed optimization, where a network of agents represented as a directed graph (digraph) aims to collaboratively minimize the sum of their individual cost functions. Existing approaches for distributed optimization over digraphs, such as Push-Pull, require agents to exchange explicit state values with their neighbors in order to reach an optimal solution. However, this can result in the disclosure of sensitive and private information. To overcome this issue, we propose a state-decomposition-based privacy-preserving finite-time push-sum (PrFTPS) algorithm without any global information such as network size or graph diameter. Then, based on PrFTPS, we design a gradient descent algorithm (PrFTPS-GD) to solve the distributed optimization problem. It is proved that under PrFTPS-GD, the privacy of each agent is preserved and the linear convergence rate related to the optimization iteration number is achieved. Finally, numerical simulations are provided to illustrate the effectiveness of the proposed approach
    corecore