3,418 research outputs found

    Stochastic regret minimization for revenue management problems with nonstationary demands

    Full text link
    We study an admission control model in revenue management with nonstationary and correlated demands over a finite discrete time horizon. The arrival probabilities are updated by current available information, that is, past customer arrivals and some other exogenous information. We develop a regret‐based framework, which measures the difference in revenue between a clairvoyant optimal policy that has access to all realizations of randomness a priori and a given feasible policy which does not have access to this future information. This regret minimization framework better spells out the trade‐offs of each accept/reject decision. We proceed using the lens of approximation algorithms to devise a conceptually simple regret‐parity policy. We show the proposed policy achieves 2‐approximation of the optimal policy in terms of total regret for a two‐class problem, and then extend our results to a multiclass problem with a fairness constraint. Our goal in this article is to make progress toward understanding the marriage between stochastic regret minimization and approximation algorithms in the realm of revenue management and dynamic resource allocation. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 433–448, 2016Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135128/1/nav21704.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135128/2/nav21704_am.pd

    The role of thrombomodulin lectin-like domain in inflammation

    Get PDF
    Thrombomodulin (TM) is a cell surface glycoprotein which is widely expressed in a variety of cell types. It is a cofactor for thrombin binding that mediates protein C activation and inhibits thrombin activity. In addition to its anticoagulant activity, recent evidence has revealed that TM, especially its lectin-like domain, has potent anti-inflammatory function through a variety of molecular mechanisms. The lectin-like domain of TM plays an important role in suppressing inflammation independent of the TM anticoagulant activity. This article makes an extensive review of the role of TM in inflammation. The molecular targets of TM lectin-like domain have also been elucidated. Recombinant TM protein, especially the TM lectin-like domain may play a promising role in the management of sepsis, glomerulonephritis and arthritis. These data demonstrated the potential therapeutic role of TM in the treatment of inflammatory diseases

    Correlation Analysis for Protein Evolutionary Family Based on Amino Acid Position Mutations and Application in PDZ Domain

    Get PDF
    BACKGROUND: It has been widely recognized that the mutations at specific directions are caused by the functional constraints in protein family and the directional mutations at certain positions control the evolutionary direction of the protein family. The mutations at different positions, even distantly separated, are mutually coupled and form an evolutionary network. Finding the controlling mutative positions and the mutative network among residues are firstly important for protein rational design and enzyme engineering. METHODOLOGY: A computational approach, namely amino acid position conservation-mutation correlation analysis (CMCA), is developed to predict mutually mutative positions and find the evolutionary network in protein family. The amino acid position mutative function, which is the foundational equation of CMCA measuring the mutation of a residue at a position, is derived from the MSA (multiple structure alignment) database of protein evolutionary family. Then the position conservation correlation matrix and position mutation correlation matrix is constructed from the amino acid position mutative equation. Unlike traditional SCA (statistical coupling analysis) approach, which is based on the statistical analysis of position conservations, the CMCA focuses on the correlation analysis of position mutations. CONCLUSIONS: As an example the CMCA approach is used to study the PDZ domain of protein family, and the results well illustrate the distantly allosteric mechanism in PDZ protein family, and find the functional mutative network among residues. We expect that the CMCA approach may find applications in protein engineering study, and suggest new strategy to improve bioactivities and physicochemical properties of enzymes

    Design of Hypervelocity-Impact Damage Evaluation Technique Based on Bayesian Classifier of Transient Temperature Attributes

    Get PDF
    With the rapid increasement of space debris on earth orbit, the hypervelocity-impact (HVI) of space debris can cause some serious damages to the spacecraft, which can affect the operation security and reliability of spacecraft. Therefore, the damage detection of the spacecrafts has become an urgent problem to be solved. In this paper, a method is proposed to detect the damage of spacecraft. Firstly, a variable-interval method is proposed to extract the effective information from the infrared image sequence. Secondly, in order to mine the physical meaning of the thermal image sequence, five attributes are used to construct a feature space. After that, a Naive Bayesian classifier is established to mine the information of different damaged areas. Then, a maximum interclass distance function is used choose the representative of each class. Finally, in order to visualize damaged areas, the Canny operator is used to extract the edge of the damage. In the experiment, ground tests are used to simulate hypervelocity impacts in space. Historical data of natural damaged material and artificial damaged material are used to build different classifiers. After that, the effective of classifiers is illustrated by accuracy, F-score and AUC. Then, two different types of materials are detected by proposed method, Independent Component Analysis (ICA) and Fuzzy C-means (FCM). The results show that the proposed method is more accurate than other methods
    corecore