743 research outputs found

    Gamma-Ray Burst/Supernova Associations: Energy Partition and the Case of a Magnetar Central Engine

    Full text link
    The favored progenitor model for Gamma-ray Bursts (GRBs) with Supernova (SN) association is the core collapse of massive stars. One possible outcome of such a collapse is a rapidly spinning, strongly magnetized neutron star ( magnetar ). We systematically analyze the multi-wavelength data of GRB/SN associations detected by several instruments before 2017 June. Twenty GRB/SN systems have been confirmed via direct spectroscopic evidence or a clear light curve bump, as well as some spectroscopic evidence resembling a GRB-SN. We derive/collect the basic physical parameters of the GRBs and the SNe, and look for correlations among these parameters. We find that the peak brightness, 56Ni mass, and explosion energy of SNe associated with GRBs are statistically higher than other Type Ib/c SNe. A statistically significant relation between the peak energy of GRBs and the peak brightness of their associated SNe is confirmed. No significant correlations are found between the GRB energies (either isotropic or beaming-corrected) and the supernova energy. We investigate the energy partition within these systems and find that the beaming-corrected GRB energy of most systems is smaller than the SN energy, with less than 30% of the total energy distributed in the relativistic jet. The total energy of the systems is typically smaller than the maximum available energy of a millisecond magnetar (2 × 1052 erg), especially if aspherical SN explosions are considered. The data are consistent with—although not proof of—the hypothesis that most, but not all, GRB/SN systems are powered by millisecond magnetars

    GRB 120729A: External Shock Origin for Both the Prompt Gamma-Ray Emission and Afterglow

    Get PDF
    Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth \gamma-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt \gamma-ray emission to the afterglow with photon index from Γγ=1.36 to Γ≈1.75. There is no obvious evolution of the SED during the afterglow. ...(Please see article full tet for complete abstract.

    Comparison of the Therapeutic Effects of Acupuncture at PC6 and ST36 for Chronic Myocardial Ischemia

    Get PDF
    We aimed to compare the differences of the effects on chronic myocardial ischemia (MI) of acupuncture at PC6 and ST36. The chronic MI model of minipigs was created by implanting an Ameroid constrictor on the left anterior descending coronary artery (LAD) and then two weeks’ acupuncture was stimulated at PC6 or ST36, respectively. The results showed that both acupoints’ stimulation decreased the serous cardiac troponin T (cTnT) and ischemia modified albumin (IMA) significantly and improved the ischemic ECG changes. The amplitude of pathological Q wave in the PC6 group decreased more significantly than that of the ST36 group. The cardiovascular magnetic resonance imaging (cMRI) results showed that the decreased left ventricular ejection fraction (LVEF) was not improved obviously in both groups. The left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) enlarged progressively even after acupuncture. The left ventricular wall mass (LVWM) in the ST36 group increased more obviously than that of the PC6 group, which paralleled the decreasing angiotensin II (Ang II) concentration in the plasma. These results suggested that acupuncture at PC6 or ST36 was effective for protecting the myocardium from chronic ischemic injury, and the effect of PC6 seemed to be better

    The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases

    Get PDF
    The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility

    Research on Snow Removal Effect Evaluation on Airport Runway Based on Wireless Data Transmission and Image Recognition

    Get PDF
    The effect of snow removal on airport runaway is relied on the human naked eyes. A new method that is based on image recognition and transmission technology to evaluate the effect of snow removal was presented and the architecture of snow sweeper's monitoring system was established in this paper. JPEG compaction algorithm was used for compression and transmission of image data in based on Digital Signal Processor platform, then the wireless data transmission and image acquisition method was used in the monitoring system. Meanwhile, this paper proposes digital analysis for real-time image acquired by image recognition technology and explores the image processing algorithms for accumulated snow on runaway to realize automatic monitoring of snow removal operation on runaway. The experiments results reveal this method is feasible. Hopefully, it could be a technical platform to optimize the scheduling and control system for airport deicing special vehicles

    Auricular Acupuncture and Vagal Regulation

    Get PDF
    Auricular acupuncture has been utilized in the treatment of diseases for thousands of years. Dr. Paul Nogier firstly originated the concept of an inverted fetus map on the external ear. In the present study, the relationship between the auricular acupuncture and the vagal regulation has been reviewed. It has been shown that auricular acupuncture plays a role in vagal activity of autonomic functions of cardiovascular, respiratory, and gastrointestinal systems. Mechanism studies suggested that afferent projections from especially the auricular branch of the vagus nerve (ABVN) to the nucleus of the solitary tract (NTS) form the anatomical basis for the vagal regulation of auricular acupuncture. Therefore, we proposed the “auriculovagal afferent pathway” (AVAP): both the autonomic and the central nervous system could be modified by auricular vagal stimulation via projections from the ABVN to the NTS. Auricular acupuncture is also proposed to prevent neurodegenerative diseases via vagal regulation. There is a controversy on the specificity and the efficacy of auricular acupoints for treating diseases. More clinical RCT trials on auricular acupuncture and experimental studies on the mechanism of auricular acupuncture should be further investigated
    • 

    corecore