725 research outputs found

    THE INFLUENCE OF BACKPACK CARRIAGE ON TRUNK POSTURE IN CHILDREN DURING UNPLANNED GAIT TERMINATION

    Get PDF
    This study aimed to examine the trunk posture in children with different backpack loads during unplanned gait termination. Twelve school boys aged 9–10 years completed unplanned and planned gait termination with a backpack load of 0%, 10%, and 15% of their body weight (BW) while level walking. Trunk inclination angle and trunk range of motion at sagittal plane and spinal angle at frontal plane were examined. In comparison with 0% BW load condition, the spinal angle increased significantly at 10% and 15% BW load condition during gait termination (

    ELUCID - Exploring the Local Universe with reConstructed Initial Density field III: Constrained Simulation in the SDSS Volume

    Full text link
    A method we developed recently for the reconstruction of the initial density field in the nearby Universe is applied to the Sloan Digital Sky Survey Data Release 7. A high-resolution N-body constrained simulation (CS) of the reconstructed initial condition, with 307233072^3 particles evolved in a 500 Mpc/h box, is carried out and analyzed in terms of the statistical properties of the final density field and its relation with the distribution of SDSS galaxies. We find that the statistical properties of the cosmic web and the halo populations are accurately reproduced in the CS. The galaxy density field is strongly correlated with the CS density field, with a bias that depend on both galaxy luminosity and color. Our further investigations show that the CS provides robust quantities describing the environments within which the observed galaxies and galaxy systems reside. Cosmic variance is greatly reduced in the CS so that the statistical uncertainties can be controlled effectively even for samples of small volumes.Comment: submitted to ApJ, 19 pages, 22 figures. Please download the high-resolution version at http://staff.ustc.edu.cn/~whywang/paper

    A new quantum group associated with a ‘nonstandard’ braid group representation

    Full text link
    A new quantum group is derived from a ‘nonstandard’ braid group representation by employing the Faddeev-Reshetikhin-Takhtajan constructive method. The classical limit is not a Lie superalgebra, despite relations like x 2 − y 2 =0. We classify all finite-dimensional irreducible representations of the new Hopf algebra and find only one- and two-dimensional ones.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43208/1/11005_2004_Article_BF00420369.pd

    ELUCID IV: Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    Full text link
    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of local Universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the `environmental quenching efficiency', which quantifies the quenched fraction as function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass-independence of density-based quenching efficiency, found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population and the difference between the two populations found previously mainly arises from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these halo-mass and stellar-mass effects, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.Comment: 21 pages, 16 figures, submitted to Ap

    ELUCID V. Lighting dark matter halos with galaxies

    Full text link
    In a recent study, using the distribution of galaxies in the north galactic pole of SDSS DR7 region enclosed in a 500\mpch box, we carried out our ELUCID simulation (Wang et al. 2016, ELUCID III). Here we {\it light} the dark matter halos and subhalos in the reconstructed region in the simulation with galaxies in the SDSS observations using a novel {\it neighborhood} abundance matching method. Before we make use of thus established galaxy-subhalo connections in the ELUCID simulation to evaluate galaxy formation models, we set out to explore the reliability of such a link. For this purpose, we focus on the following a few aspects of galaxies: (1) the central-subhalo luminosity and mass relations; (2) the satellite fraction of galaxies; (3) the conditional luminosity function (CLF) and conditional stellar mass function (CSMF) of galaxies; and (4) the cross correlation functions between galaxies and the dark matter particles, most of which are measured separately for all, red and blue galaxy populations. We find that our neighborhood abundance matching method accurately reproduces the central-subhalo relations, satellite fraction, the CLFs and CSMFs and the biases of galaxies. These features ensure that thus established galaxy-subhalo connections will be very useful in constraining galaxy formation processes. And we provide some suggestions on the three levels of using the galaxy-subhalo pairs for galaxy formation constraints. The galaxy-subhalo links and the subhalo merger trees in the SDSS DR7 region extracted from our ELUCID simulation are available upon request.Comment: 18 pages, 13 figures, ApJ accepte

    A prediction model for short-term neurodevelopmental impairment in preterm infants with gestational age less than 32 weeks

    Get PDF
    IntroductionEarly identification and intervention of neurodevelopmental impairment in preterm infants may significantly improve their outcomes. This study aimed to build a prediction model for short-term neurodevelopmental impairment in preterm infants using machine learning method.MethodsPreterm infants with gestational age  < 32 weeks who were hospitalized in The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, and were followed-up to 18 months corrected age were included to build the prediction model. The training set and test set are divided according to 8:2 randomly by Microsoft Excel. We firstly established a logistic regression model to screen out the indicators that have a significant effect on predicting neurodevelopmental impairment. The normalized weights of each indicator were obtained by building a Support Vector Machine, in order to measure the importance of each predictor, then the dimension of the indicators was further reduced by principal component analysis methods. Both discrimination and calibration were assessed with a bootstrap of 505 resamples.ResultsIn total, 387 eligible cases were collected, 78 were randomly selected for external validation. Multivariate logistic regression demonstrated that gestational age(p = 0.0004), extrauterine growth restriction (p = 0.0367), vaginal delivery (p = 0.0009), and hyperbilirubinemia (0.0015) were more important to predict the occurrence of neurodevelopmental impairment in preterm infants. The Support Vector Machine had an area under the curve of 0.9800 on the training set. The results of the model were exported based on 10-fold cross-validation. In addition, the area under the curve on the test set is 0.70. The external validation proves the reliability of the prediction model.ConclusionA support vector machine based on perinatal factors was developed to predict the occurrence of neurodevelopmental impairment in preterm infants with gestational age  < 32 weeks. The prediction model provides clinicians with an accurate and effective tool for the prevention and early intervention of neurodevelopmental impairment in this population
    • …
    corecore