5,140 research outputs found

    Distributed entanglement induced by dissipative bosonic media

    Full text link
    We describe a scheme with analytic result that allows to generate steady-state entanglement for two atoms over a dissipative bosonic medium. The resonant coupling between the mediating bosonic mode and cavity modes produces three collective atomic decay channels. This dissipative dynamics, together with the unitary process induced by classical microwave fields, drives the two atoms to the symmetric or asymmetric entangled steady state conditional upon the choice of the phases of the microwave fields. The effects on the steady-state entanglement of off-resonance mediating bosonic modes are analyzed. The entanglement can be obtained with high fidelity regardless of the initial state and there is a linear relation in the scaling of the fidelity with the cooperativity parameter. The fidelity is insensitive to the fluctuation of the Rabi frequencies of the classical driving fields.Comment: to appear in Europhysics Letter

    Intrinsically Water-Stable Keratin Nanoparticles and Their \u3ci\u3ein Vivo\u3c/i\u3e Biodistribution for Targeted Delivery

    Get PDF
    Highly water-stable nanoparticles of around 70 nm and capable of distributing with high uptake in certain organs of mice were developed from feather keratin. Nanoparticles could provide novel veterinary diagnostics and therapeutics to boost efficiency in identification and treatment of livestock diseases to improve protein supply and ensure safety and quality of food. Nanoparticles could penetrate easily into cells and small capillaries, surpass detection of the immune system, and reach targeted organs because of their nanoscale sizes. Proteins with positive and negative charges and hydrophobic domains enable loading of various types of drugs and, hence, are advantageous over synthetic polymers and carbohydrates for drug delivery. In this research, the highly cross-linked keratin was processed into nanoparticles with diameters of 70 nm under mild conditions. Keratin nanoparticles were found supportive to cell growth via an in vitro study and highly stable after stored in physiological environments for up to 7 days. At 4 days after injection, up to 18% of the cells in kidneys and 4% of the cells in liver of mice were penetrated by the keratin nanoparticles
    • …
    corecore