24,340 research outputs found

    Left-Right Asymmetry of Weak Interaction Mass of Polarized Fermions in Flight

    Full text link
    The left-right polarization-dependent asymmetry of the weak interaction mass is investigated. Based on the Standard Model, the calculation shows that the weak interaction mass of left-handed polarized fermions is always greater than that of right-handed polarized fermions in flight with the same velocity in any inertial frame. The asymmetry of the weak interaction mass might be very important to the investigation of neutrino mass and would have an important significance for understanding the parity nonconservation in weak interactions.Comment: 8 pages, 2 figures, corrected calculatio

    Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory

    Full text link
    Five-dimensional collective Hamiltonian based on the covariant density functional theory has been applied to study the the low-lying states of even-even 148162^{148-162}Gd isotopes. The shape evolution from 148^{148}Gd to 162^{162}Gd is presented. The experimental energy spectra and intraband B(E2)B(E2) transition probabilities for the 148162^{148-162}Gd isotopes are reproduced by the present calculations. The relative B(E2)B(E2) ratios in present calculations are also compared with the available interacting boson model results and experimental data. It is found that the occupations of neutron 1i13/21i_{13/2} orbital result in the well-deformed prolate shape, and are essential for Gd isotopes.Comment: 11pages, 10figure

    Experimental tests on the lifetime Asymmetry

    Full text link
    The experimental test problem of the left-right polarization-dependent lifetime asymmetry is discussed. It shows that the existing experiments cannot demonstrate the lifetime asymmetry to be right or wrong after analyzing the measurements on the neutron, the muon and the tau lifetime, as well as the g2g-2 experiment. However, It is pointed out emphatically that the SLD and the E158 experiments, the measurements of the left-right integrated cross section asymmetry in ZZ boson production by e+ee^+e^- collisions and by electron-electron M{\o}ller scattering, can indirectly demonstrate the lifetime asymmetry. In order to directly demonstrate the lifetime asymmetry, we propose some possible experiments on the decays of polarized muons. The precise measurement of the lifetime asymmetry could have important significance for building a muon collider, also in cosmology and astrophysics. It would provide a sensitive test of the standard model in particle physics and allow for exploration of the possible V+AV+A interactions.Comment: 11 pages, 1 figur

    On defining partition entropy by inequalities

    Get PDF
    Partition entropy is the numerical metric of uncertainty within a partition of a finite set, while conditional entropy measures the degree of difficulty in predicting a decision partition when a condition partition is provided. Since two direct methods exist for defining conditional entropy based on its partition entropy, the inequality postulates of monotonicity, which conditional entropy satisfies, are actually additional constraints on its entropy. Thus, in this paper partition entropy is defined as a function of probability distribution, satisfying all the inequalities of not only partition entropy itself but also its conditional counterpart. These inequality postulates formalize the intuitive understandings of uncertainty contained in partitions of finite sets.We study the relationships between these inequalities, and reduce the redundancies among them. According to two different definitions of conditional entropy from its partition entropy, the convenient and unified checking conditions for any partition entropy are presented, respectively. These properties generalize and illuminate the common nature of all partition entropies

    Novel spectrum sensing algorithms for OFDM cognitive radio networks

    Full text link
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm “Differential Characteristics-Based OFDM (DC-OFDM)” for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain _ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a “Differential Characteristics-Based Cyclic Prefix (DC-CP)” detector and a “Differential Characteristics-Based Pilot Tones (DC-PT)” detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors
    corecore