'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Partition entropy is the numerical metric of uncertainty within
a partition of a finite set, while conditional entropy measures the degree of
difficulty in predicting a decision partition when a condition partition is
provided. Since two direct methods exist for defining conditional entropy
based on its partition entropy, the inequality postulates of monotonicity,
which conditional entropy satisfies, are actually additional constraints on
its entropy. Thus, in this paper partition entropy is defined as a function
of probability distribution, satisfying all the inequalities of not only partition
entropy itself but also its conditional counterpart. These inequality
postulates formalize the intuitive understandings of uncertainty contained
in partitions of finite sets.We study the relationships between these inequalities,
and reduce the redundancies among them. According to two different
definitions of conditional entropy from its partition entropy, the convenient
and unified checking conditions for any partition entropy are presented, respectively.
These properties generalize and illuminate the common nature
of all partition entropies