14,412 research outputs found

    A range extension for Haplomitrium mnioides (Lindb.) R.M.Schust.

    Get PDF
    Haplomitrium mnioides (Lindb.) R.M.Schust. is reported as new to Hainan Island. A continuous distribution of H. mnioides from west (Thailand) to east (Japan) is confirmed. Habitat pictures and a distribution map are provided

    Complex quantum network model of energy transfer in photosynthetic complexes

    Full text link
    The quantum network model with real variables is usually used to describe the excitation energy transfer (EET) in the Fenna-Matthews-Olson(FMO) complexes. In this paper we add the quantum phase factors to the hopping terms and find that the quantum phase factors play an important role in the EET. The quantum phase factors allow us to consider the space structure of the pigments. It is found that phase coherence within the complexes would allow quantum interference to affect the dynamics of the EET. There exist some optimal phase regions where the transfer efficiency takes its maxima, which indicates that when the pigments are optimally spaced, the exciton can pass through the FMO with perfect efficiency. Moreover, the optimal phase regions almost do not change with the environments. In addition, we find that the phase factors are useful in the EET just in the case of multiple-pathway. Therefore, we demonstrate that, the quantum phases may bring the other two factors, the optimal space of the pigments and multiple-pathway, together to contribute the EET in photosynthetic complexes with perfect efficiency.Comment: 8 pages, 9 figure

    Strong and Electromagnetic Decays of The DD-wave Heavy Mesons

    Full text link
    We calculate the π\pi, ρ\rho, ω\omega, and γ\gamma coupling constants between the heavy meson doublets (1,2)(1^-,2^-) and (0^-,1^-)/(0^+,1^+) within the framework of the light-cone QCD sum rule at the leading order of heavy quark effective theory. Most of the sum rules are stable with the variations of the Borel parameter and the continuum threshold. Then we calculate the strong and electromagnetic decay widths of the (1,2)(1^-,2^-) D-wave heavy mesons. Their total widths are around several tens of MeV, which is helpful in the future experimental search.Comment: 20 pages, 13 figure

    Geometric quantum gates robust against stochastic control errors

    Full text link
    We analyze a scheme for quantum computation where quantum gates can be continuously changed from standard dynamic gates to purely geometric ones. These gates are enacted by controlling a set of parameters that are subject to unwanted stochastic fluctuations. This kind of noise results in a departure from the ideal case that can be quantified by a gate fidelity. We find that the maximum of this fidelity corresponds to quantum gates with a vanishing dynamical phase.Comment: 4 pager

    Quantum computation in decoherence-free subspace with superconducting devices

    Get PDF
    We propose a scheme to implement quantum computation in decoherence-free subspace with superconducting devices inside a cavity by unconventional geometric manipulation. Universal single-qubit gates in encoded qubit can be achieved with cavity assisted interaction. A measurement-based two-qubit Controlled-Not gate is produced with parity measurements assisted by an auxiliary superconducting device and followed by prescribed single-qubit gates. The measurement of currents on two parallel devices can realize a projective measurement, which is equivalent to the parity measurement on the involved devices.Comment: v2: thoroughly rewritten version with title and motivation changed; v3: published version with detail dirivation

    Generalized Hofstadter model on a cubic optical lattice: From nodal bands to the three-dimensional quantum Hall effect

    Get PDF
    We propose that a tunable generalized three-dimensional Hofstadter Hamiltonian can be realized by engineering the Raman-assisted hopping of ultracold atoms in a cubic optical lattice. The Hamiltonian describes a periodic lattice system under artificial magnetic fluxes in three dimensions. For certain hopping configurations, the bulk bands can have Weyl points and nodal loops, respectively, allowing the study of both the two nodal semimetal states within this system. Furthermore, we illustrate that with proper rational fluxes and hopping parameters, the system can exhibit the three-dimensional quantum Hall effect when the Fermi level lies in the band gaps, which is topologically characterized by one or two nonzero Chern numbers. Our proposed optical-lattice system provides a promising platform for exploring various exotic topological phases in three dimensions.Comment: 10 pages, 5 figure
    corecore