52,326 research outputs found
Simulating quantum computation by contracting tensor networks
The treewidth of a graph is a useful combinatorial measure of how close the
graph is to a tree. We prove that a quantum circuit with gates whose
underlying graph has treewidth can be simulated deterministically in
time, which, in particular, is polynomial in if
. Among many implications, we show efficient simulations for
log-depth circuits whose gates apply to nearby qubits only, a natural
constraint satisfied by most physical implementations. We also show that
one-way quantum computation of Raussendorf and Briegel (Physical Review
Letters, 86:5188--5191, 2001), a universal quantum computation scheme with
promising physical implementations, can be efficiently simulated by a
randomized algorithm if its quantum resource is derived from a small-treewidth
graph.Comment: 7 figure
On quasi-local Hamiltonians in General Relativity
We analyse the definition of quasi-local energy in GR based on a Hamiltonian
analysis of the Einstein-Hilbert action initiated by Brown-York. The role of
the constraint equations, in particular the Hamiltonian constraint on the
timelike boundary, neglected in previous studies, is emphasized here. We argue
that a consistent definition of quasi-local energy in GR requires, at a
minimum, a framework based on the (currently unknown) geometric well-posedness
of the initial boundary value problem for the Einstein equations.Comment: 9 page
Stationary untrapped boundary conditions in general relativity
A class of boundary conditions for canonical general relativity are proposed
and studied at the quasi-local level. It is shown that for untrapped or
marginal surfaces, fixing the area element on the 2-surface (rather than the
induced 2-metric) and the angular momentum surface density is enough to have a
functionally differentiable Hamiltonian, thus providing definition of conserved
quantities for the quasi-local regions. If on the boundary the evolution vector
normal to the 2-surface is chosen to be proportional to the dual expansion
vector, we obtain a generalization of the Hawking energy associated with a
generalized Kodama vector. This vector plays the role for the stationary
untrapped boundary conditions which the stationary Killing vector plays for
stationary black holes. When the dual expansion vector is null, the boundary
conditions reduce to the ones given by the non-expanding horizons and the null
trapping horizons.Comment: 11 pages, improved discussion section, a reference added, accepted
for publication in Classical and Quantum Gravit
Probing non-Abelian statistics of Majorana fermions in ultracold atomic superfluid
We propose an experiment to directly probe the non-Abelian statistics of
Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms.
We show different orders of braiding operations give orthogonal output states
that can be distinguished through Raman spectroscopy. Realization of Majorana
bound states in an s-wave superfluid requires strong spin-orbital coupling and
a controllable Zeeman field in the perpendicular direction. We present a simple
laser configuration to generate the artificial spin-orbital coupling and the
required Zeeman field in the dark state subspace.Comment: 4 pages; Add detailed discussion of feasibility of the scheme;add
ref
On methods to determine bounds on the Q-factor for a given directivity
This paper revisit and extend the interesting case of bounds on the Q-factor
for a given directivity for a small antenna of arbitrary shape. A higher
directivity in a small antenna is closely connected with a narrow impedance
bandwidth. The relation between bandwidth and a desired directivity is still
not fully understood, not even for small antennas. Initial investigations in
this direction has related the radius of a circumscribing sphere to the
directivity, and bounds on the Q-factor has also been derived for a partial
directivity in a given direction. In this paper we derive lower bounds on the
Q-factor for a total desired directivity for an arbitrarily shaped antenna in a
given direction as a convex problem using semi-definite relaxation techniques
(SDR). We also show that the relaxed solution is also a solution of the
original problem of determining the lower Q-factor bound for a total desired
directivity.
SDR can also be used to relax a class of other interesting non-convex
constraints in antenna optimization such as tuning, losses, front-to-back
ratio. We compare two different new methods to determine the lowest Q-factor
for arbitrary shaped antennas for a given total directivity. We also compare
our results with full EM-simulations of a parasitic element antenna with high
directivity.Comment: Correct some minor typos in the previous versio
Light Fan Driven by a Relativistic Laser Pulse
When a relativistic laser pulse with a high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or “light fan.” Because of its structure, the latter can gain significant orbital angular momentum (OAM), and the opposite OAM is imparted to the reflected light, creating a twisted relativistic light pulse. Such an interaction scenario is demonstrated by particle-in-cell simulation as well as analytical modeling, and should be easily verifiable in the laboratory. As an important characteristic, the twisted relativistic light pulse has a strong torque and ultrahigh OAM density
Periodic Variation of Stress in Sputter Deposited Si/WSi2 Multilayers
A tension increment after sputter deposition of 1 nm of WSi2 onto sputtered
Si was observed at low Ar gas pressures. Wafer curvature data on multilayers
were found to have a periodic variation corresponding to the multilayer period,
and this permitted statistical analyses to improve the sensitivity to small
stresses. The observation of tension instead of compression in the initial
stage of growth is new and a model invoking surface rearrangement is invoked.
The data also bear on an unusual surface smoothing phenomena for sputtered Si
surfaces caused by the sputter deposition of WSi2 . We furthermore report that
for low Ar pressures the Si layers are the predominant source of built-up
stress
- …