57,682 research outputs found

    On quasi-local Hamiltonians in General Relativity

    Full text link
    We analyse the definition of quasi-local energy in GR based on a Hamiltonian analysis of the Einstein-Hilbert action initiated by Brown-York. The role of the constraint equations, in particular the Hamiltonian constraint on the timelike boundary, neglected in previous studies, is emphasized here. We argue that a consistent definition of quasi-local energy in GR requires, at a minimum, a framework based on the (currently unknown) geometric well-posedness of the initial boundary value problem for the Einstein equations.Comment: 9 page

    The role of the synchrotron component in the mid infrared spectrum of M 87

    Full text link
    We study in detail the mid-infrared Spitzer-IRS spectrum of M 87 in the range 5 to 20 micron. Thanks to the high sensitivity of our Spitzer-IRS spectra we can disentangle the stellar and nuclear components of this active galaxy. To this end we have properly subtracted from the M 87 spectrum, the contribution of the underlying stellar continuum, derived from passive Virgo galaxies in our sample. The residual is a clear power-law, without any additional thermal component, with a zero point consistent with that obtained by high spatial resolution, ground based observations. The residual is independent of the adopted passive template. This indicates that the 10 micron silicate emission shown in spectra of M 87 can be entirely accounted for by the underlying old stellar population, leaving little room for a possible torus contribution. The MIR power-law has a slope alpha ~ 0.77-0.82 (Sννα_\nu\propto\nu^{-\alpha}), consistent with optically thin synchrotron emission.Comment: 5 pages, 4 figures, accepted for publication in ApJ main journa

    Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    Full text link
    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obtained from both laboratory and theoretical calculations. The copper abundances determined from non-LTE calculations are increased by 0.01 to 0.2 dex depending on the stellar parameters compared with the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into consideration, the high- and low-alpha stars still show distinguishable copper abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus [Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor stars. Our results confirmed that there are two distinct halo populations in the solar neighborhood. The dichotomy in copper abundance is a peculiar feature of each population, suggesting that they formed in different environments and evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table

    On a Localized Riemannian Penrose Inequality

    Full text link
    Consider a compact, orientable, three dimensional Riemannian manifold with boundary with nonnegative scalar curvature. Suppose its boundary is the disjoint union of two pieces: the horizon boundary and the outer boundary, where the horizon boundary consists of the unique closed minimal surfaces in the manifold and the outer boundary is metrically a round sphere. We obtain an inequality relating the area of the horizon boundary to the area and the total mean curvature of the outer boundary. Such a manifold may be thought as a region, surrounding the outermost apparent horizons of black holes, in a time-symmetric slice of a space-time in the context of general relativity. The inequality we establish has close ties with the Riemannian Penrose Inequality, proved by Huisken and Ilmanen, and by Bray.Comment: 16 page

    Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming

    Get PDF
    The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints

    Forward-Backward Multiplicity Correlations in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 Gev

    Full text link
    The study of correlations among particles produced in different rapidity regions may provide understanding of the mechanisms of particle production. Correlations that extend over a longer range are observed in hadron-hadron interactions only at higher energies. Results for short and long-range multiplicity correlations (Forward-Backward) are presented for Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV. The growth of long range correlations are observed as a function of the pseudorapidity gap in central Au+Au collisions. The Dual Parton model and Color Glass Condensate phenomenology have been explored to understand the origin of long range correlations.Comment: 8 pages, 4 figures, IWCF06, Hangzhou, China, Nov. 21-24, 200

    Optical study of phase transitions in single-crystalline RuP

    Full text link
    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.Comment: 5 pages, 6 figure
    corecore