1,451 research outputs found

    Phenolic Compound Profiles in Grape Skins of Cabernet Sauvignon, Merlot, Syrah and Marselan Cultivated in the Shacheng Area (China)

    Get PDF
    The phenolic compounds in the grape skins of Cabernet Sauvignon (CS), Merlot (ML), Syrah (SY) and Marselan (MS) from Shacheng, in China, were compared using HPLC-MS/MS. The results showed that the types and levels of phenolic compounds varied greatly with cultivars. Malvidin derivatives were the main anthocyanins. CS and ML showed a higher content of malvidin-3-O-(6-O-acetyl)-glucoside than malvidin-3-O-(trans-6-O- coumaryl)-glucoside, while SY and MS differed from CS and ML. ML had higher delphinidin and cyanidin derivatives, SY had higher peonidin derivatives, while malvidin and petunidin were higher in MS. The total content of flavonols, flavan-3-ols, phenolic acids and stilbenes in grape skins showed no difference among CS, ML and MS. Isorhamnetin-3-O-glucoside (CS, ML, MY), quercetin-3O-glucoside (SY), procyanidin trimer (SY, MS), procyanidin dimer (CS, ML), syringetin-3-O-glucoside, trans-cinnamic acid and resveratrol were the most abundant non-anthocyanin phenolic compounds. Cluster analysis showed that CS and ML, and SY and MS had similar phenolic profiles

    Active control of qubit-qubit entanglement evolution

    Full text link
    In this work, we propose a scheme to design the time evolution of the entropy of entanglement between two qubits. It is shown an explicit accurate solution for the inverse problem of determining the time dependence of the coupling constant from a user-defined dynamical entanglement function. Such an active control of entanglement can be implemented in many different physical implementations of coupled qubits, and we briefly comment on the use of interacting flux qubits.Comment: Author added, Expanded version, 10 figure

    Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the Δ\Delta

    Get PDF
    We analyze the degree to which parity-violating (PV) electroexcitation of the Δ(1232)\Delta(1232) resonance may be used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast to the situation for elastic electron scattering, the axial N→ΔN\to\Delta PV asymmetry does not vanish at the photon point as a consequence of a new term entering the radiative corrections. We argue that an experimental determination of these radiative corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page

    Fluctuating Filaments I: Statistical Mechanics of Helices

    Full text link
    We examine the effects of thermal fluctuations on thin elastic filaments with non-circular cross-section and arbitrary spontaneous curvature and torsion. Analytical expressions for orientational correlation functions and for the persistence length of helices are derived, and it is found that this length varies non-monotonically with the strength of thermal fluctuations. In the weak fluctuation regime, the local helical structure is preserved and the statistical properties are dominated by long wavelength bending and torsion modes. As the amplitude of fluctuations is increased, the helix ``melts'' and all memory of intrinsic helical structure is lost. Spontaneous twist of the cross--section leads to resonant dependence of the persistence length on the twist rate.Comment: 5 figure

    Towards Reliable Automatic Protein Structure Alignment

    Full text link
    A variety of methods have been proposed for structure similarity calculation, which are called structure alignment or superposition. One major shortcoming in current structure alignment algorithms is in their inherent design, which is based on local structure similarity. In this work, we propose a method to incorporate global information in obtaining optimal alignments and superpositions. Our method, when applied to optimizing the TM-score and the GDT score, produces significantly better results than current state-of-the-art protein structure alignment tools. Specifically, if the highest TM-score found by TMalign is lower than (0.6) and the highest TM-score found by one of the tested methods is higher than (0.5), there is a probability of (42%) that TMalign failed to find TM-scores higher than (0.5), while the same probability is reduced to (2%) if our method is used. This could significantly improve the accuracy of fold detection if the cutoff TM-score of (0.5) is used. In addition, existing structure alignment algorithms focus on structure similarity alone and simply ignore other important similarities, such as sequence similarity. Our approach has the capacity to incorporate multiple similarities into the scoring function. Results show that sequence similarity aids in finding high quality protein structure alignments that are more consistent with eye-examined alignments in HOMSTRAD. Even when structure similarity itself fails to find alignments with any consistency with eye-examined alignments, our method remains capable of finding alignments highly similar to, or even identical to, eye-examined alignments.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Spin-orbit coupling and crystal-field splitting in the electronic and optical properties of nitride quantum dots with a wurtzite crystal structure

    Full text link
    We present an sp3sp^3 tight-binding model for the calculation of the electronic and optical properties of wurtzite semiconductor quantum dots (QDs). The tight-binding model takes into account strain, piezoelectricity, spin-orbit coupling and crystal-field splitting. Excitonic absorption spectra are calculated using the configuration interaction scheme. We study the electronic and optical properties of InN/GaN QDs and their dependence on structural properties, crystal-field splitting, and spin-orbit coupling.Comment: 9 pages, 6 figure

    State transfer in dissipative and dephasing environments

    Full text link
    By diagonalization of a generalized superoperator for solving the master equation, we investigated effects of dissipative and dephasing environments on quantum state transfer, as well as entanglement distribution and creation in spin networks. Our results revealed that under the condition of the same decoherence rate Îł\gamma, the detrimental effects of the dissipative environment are more severe than that of the dephasing environment. Beside this, the critical time tct_c at which the transfer fidelity and the concurrence attain their maxima arrives at the asymptotic value t0=π/2λt_0=\pi/2\lambda quickly as the spin chain length NN increases. The transfer fidelity of an excitation at time t0t_0 is independent of NN when the system subjects to dissipative environment, while it decreases as NN increases when the system subjects to dephasing environment. The average fidelity displays three different patterns corresponding to N=4r+1N=4r+1, N=4r−1N=4r-1 and N=2rN=2r. For each pattern, the average fidelity at time t0t_0 is independent of rr when the system subjects to dissipative environment, and decreases as rr increases when the system subjects to dephasing environment. The maximum concurrence also decreases as NN increases, and when N→∞N\rightarrow\infty, it arrives at an asymptotic value determined by the decoherence rate Îł\gamma and the structure of the spin network.Comment: 12 pages, 6 figure

    Recoil Order Chiral Corrections to Baryon Octet Axial Currents and Large NcN_c QCD

    Get PDF
    We compute the chiral corrections to octet baryon axial currents through O(p3){\cal O}(p^3) in heavy baryon chiral perturbation theory, including both octet and decuplet baryon intermediate states. We include the latter in a consistent way by using the small scale expansion. We find that, in contrast to the situation at O(p2){\cal O}(p^2), there exist no cancellations between octet and decuplet contributions at O(p3){\cal O}(p^3). Consequently, the O(p3){\cal O}(p^3) corrections spoil the expected scaling behavior of the chiral expansion. We discuss this result in terms of the 1/Nc1/N_c expansion. We also consider the implications for determination of the strange quark contribution to the nucleon spin from polarized deep inelastic scattering data.Comment: 7 page

    A System for the Synchronized Recording of Sonomyography, Electromyography and Joint Angle

    Get PDF
    Ultrasound and electromyography (EMG) are two of the most commonly used diagnostic tools for the assessment of muscles. Recently, many studies reported the simultaneous collection of EMG signals and ultrasound images, which were normally amplified and digitized by different devices. However, there is lack of a systematic method to synchronize them and no study has reported the effects of ultrasound gel to the EMG signal collection during the simultaneous data collection. In this paper, we introduced a new method to synchronize ultrasound B-scan images, EMG signals, joint angles and other related signals (e.g. force and velocity signals) in real-time. The B-mode ultrasound images were simultaneously captured by the PC together with the surface EMG (SEMG) and the joint angle signal. The deformations of the forearm muscles induced by wrist motions were extracted from a sequence of ultrasound images, named as Sonomyography (SMG). Preliminary experiments demonstrated that the proposed method could reliably collect the synchronized ultrasound images, SEMG signals and joint angle signals in real-time. In addition, the effect of ultrasound gel on the SEMG signals when the EMG electrodes were close to the ultrasound probe was studied. It was found that the SEMG signals were not significantly affected by the amount of the ultrasound gel. The system is being used for the study of contractions of various muscles as well as the muscle fatigue

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
    • 

    corecore