50,392 research outputs found

    Geometries and energetics of methanol–ethanol clusters: a VUV laser/time-of-flight mass spectrometry and density functional theory study

    Get PDF
    Hydrogen-bonded clusters, formed above liquid methanol (Me) and ethanol (Et) mixtures of various compositions, were entrained in a supersonic jet and probed using 118 nm vacuum ultraviolet (VUV) laser single-photon ionization/time-of-flight mass spectrometry. The spectra are dominated by protonated cluster ions, formed by ionizing hydrogen-bonded MemEtn neutrals, m = 0–4, n = 0–3, and m + n = 2–5. The structures and energetics of the neutral and ionic species were investigated using both the all-atom optimized potential for liquid state, OPLS-AA, and the density functional (DFT) calculations. The energetic factors affecting the observed cluster distributions were examined. Calculations indicate that the large change in binding energy going from trimer to tetramer can be attributed more to pair-wise interactions than to cooperativity effects

    X(1835): A Natural Candidate of η′\eta^\prime's Second Radial Excitation

    Full text link
    Recently BES collaboration observed one interesting resonance X(1835). We point out that its mass, total width, production rate and decay pattern favor its assignment as the second radial excitation of η′\eta^\prime meson very naturally

    Synthesis, Structure and Magnetic Properties of New Layered Iron-Oxychalcogenide Na2Fe2OSe2

    Full text link
    A new layered iron-oxychalcogenide Na2Fe2OSe2 has been synthesized and structurally characterized by powder X-ray diffraction. The structure is formed by alternate stacking of the newly discovered [Fe2OSe2] blocks and double layers of Na. Conductivity study shows that Na2Fe2OSe2 is a semiconductor with activation energy of 0.26 eV. Magnetic susceptibility and heat capacity measurements reveal an antiferromagnetic phase transition occurs at TN=73 K. A broad maximum of magnetic susceptibility and a slow decay of the specific heat above TN, arises as a result of two-dimensional short-range spin correlation.Comment: 4 pages, 4 figure

    Uncertainty analysis on process responses of conventional spinning using finite element method

    Get PDF
    Conventional spinning is a widely used metal forming process to manufacture rotationally axis-symmetric and asymmetric products. Considerable efforts have been made to investigate the forming quality of spun parts using the process in recent years. However, inherent uncertainty properties involved in the spinning process are rarely considered in previous studies. In this paper, an uncertainty analysis and process optimisation procedure have been developed and implemented on conventional spinning with 3D Finite Element Method (FEM). Three process variables are randomized by Gaussian distribution to study the probabilistic characteristics of two process responses. Linear and quadratic approximate representations are constructed by Monte Carlo based Response Surface Method (RSM) with Latin Hypercube Sampling (LHS). The Most Probable Point (MPP) method, which has been widely used to estimate the failure probability in other applications, is further developed in this paper to obtain the probability distribution of the system responses. Following an evaluation of the system responses conducted by the MPP method, a control variable method is used to reduce the variance of spun part wall thickness and total roller force to satisfy the 3σ quality requirement. This uncertainty analysis and process optimisation procedure can be easily implemented in other metal spinning processes. © 2014 Springer-Verlag Berlin Heidelberg

    Microstructure and Fe-vacancy ordering in the KFexSe2 superconducting system

    Full text link
    Structural investigations by means of transmission electron microscopy (TEM) on KFexSe2 with 1.5 \leq x \leq 1.8 have revealed a rich variety of microstructure phenomena, the KFe1.5Se2 crystal often shows a superstructure modulation along the [310] zone-axis direction, this superstructure can be well interpreted by the Fe-vacancy order within the a-b plane. Increase of Fe-concentration in the KFexSe2 materials could not only result in the appearance of superconductivity but also yield clear alternations of microstructure. Structural inhomogeneity, the complex superstructures and defect structures in the superconducting KFe1.8Se2 sample have been investigated based on the high-resolution TEM.Comment: 13 pages, 4 figure
    • …
    corecore