2,739 research outputs found

    Quantitative Assessment of Flame Stability Through Image Processing and Spectral Analysis

    Get PDF
    This paper experimentally investigates two generalized methods, i.e., a simple universal index and oscillation frequency, for the quantitative assessment of flame stability at fossil-fuel-fired furnaces. The index is proposed to assess the stability of flame in terms of its color, geometry, and luminance. It is designed by combining up to seven characteristic parameters extracted from flame images. The oscillation frequency is derived from the spectral analysis of flame radiation signals. The measurements involved in these two methods do not require prior knowledge about fuel property, burner type, and other operation conditions. They can therefore be easily applied to flame stability assessment without costly and complex adaption. Experiments were carried out on a 9-MW heavy-oil-fired combustion test rig over a wide range of combustion conditions including variations in swirl vane position of the tertiary air, swirl vane position of the secondary air, and the ratio of the primary air to the total air. The impact of these burner parameters on the stability of heavy oil flames is investigated by using the index and oscillation frequency proposed. The experimental results obtained demonstrate the effectiveness of the methods and the importance of maintaining a stable flame for reduced NOx emissions. It is envisaged that such methods can be easily transferred to existing flame closed-circuit television systems and flame failure detectors in power stations for flame stability monitoring

    Phase diagram and exotic spin-spin correlations of anisotropic Ising model on the Sierpi\'nski gasket

    Full text link
    The anisotropic antiferromagnetic Ising model on the fractal Sierpi\'{n}ski gasket is intensively studied, and a number of exotic properties are disclosed. The ground state phase diagram in the plane of magnetic field-interaction of the system is obtained. The thermodynamic properties of the three plateau phases are probed by exploring the temperature-dependence of magnetization, specific heat, susceptibility and spin-spin correlations. No phase transitions are observed in this model. In the absence of a magnetic field, the unusual temperature dependence of the spin correlation length is obtained with 0≤0 \leqJb/_b/Ja<1_a<1, and an interesting crossover behavior between different phases at Jb/_b/Ja=1_a=1 is unveiled, whose dynamics can be described by the Jb/_b/Ja_a-dependence of the specific heat, susceptibility and spin correlation functions. The exotic spin-spin correlation patterns that share the same special rotational symmetry as that of the Sierpi\'{n}ski gasket are obtained in both the 1/31/3 plateau disordered phase and the 5/95/9 plateau partially ordered ferrimagnetic phase. Moreover, a quantum scheme is formulated to study the thermodynamics of the fractal Sierpi\'{n}ski gasket with Heisenberg interactions. We find that the unusual temperature dependence of the correlation length remains intact in a small quantum fluctuation.Comment: 9 pages, 12 figure
    • …
    corecore