79,062 research outputs found

    Comment on "Off-diagonal Long-range Order in Bose Liquids: Irrotational Flow and Quantization of Circulation"

    Full text link
    In the context of an application to superfluidity, it is elaborated how to do quantum mechanics of a system with a rotational velocity. Especially, in both the laboratory frame and the non-inertial co-rotating frame, the canonical momentum, which corresponds to the quantum mechanical momentum operator, contains a part due to the rotational velocity.Comment: 2 page, comment on cond-mat/010435

    Effects of local event-by-event conservation laws in ultrarelativistic heavy-ion collisions at particlization

    Get PDF
    Many simulations of relativistic heavy-ion collisions involve the switching from relativistic hydrodynamics to kinetic particle transport. This switching entails the sampling of particles from the distribution of energy, momentum, and conserved currents provided by hydrodynamics. Usually, this sampling ensures the conservation of these quantities only on the average, i.e., the conserved quantities may actually fluctuate among the sampled particle configurations and only their averages over many such configurations agree with their values from hydrodynamics. Here we apply a recently invented method [D. Oliinychenko and V. Koch, Phys. Rev. Lett. 123, 182302 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.182302] to ensure conservation laws for each sampled configuration in spatially compact regions (patches) and study their effects: From the well-known (micro-)canonical suppression of means and variances to little studied (micro-)canonical correlations and higher-order fluctuations. Most of these effects are sensitive to the patch size. Many of them do not disappear even in the thermodynamic limit, when the patch size goes to infinity. The developed method is essential for particlization of stochastic hydrodynamics. It is useful for studying the chiral magnetic effect, small systems, and in general for fluctuation and correlation observables

    Theoretical Predictions of Superconductivity in Alkali Metals under High Pressure

    Full text link
    We calculated the superconductivity properties of alkali metals under high pressure using the results of band theory and the rigid-muffin-tin theory of Gaspari and Gyorffy. Our results suggest that at high pressures Lithium, Potassium, Rubidium and Cesium would be superconductors with transition temperatures approaching 5−20K5-20 K. Our calculations also suggest that Sodium would not be a superconductor under high pressure even if compressed to less than half of its equilibrium volume. We found that the compression of the lattice strengthens the electron-phonon coupling through a delicately balanced increase of both the electronic and phononic components of this coupling. This increase of the electron-phonon coupling in Li is due to an enhancement of the ss-pp channel of the interaction, while in the heavier elements the pp-dd channel is the dominant component.Comment: 6 pages, 8 figure
    • …
    corecore