240 research outputs found

    COP-AQ - The UK-China Collaboration to Optimise Net Zero Policy options for Air Quality and Health

    Get PDF
    Clean Air policies in the UK and China have substantially improved air quality in recent years. However, reaching the new WHO guidelines on air pollution exposure to protect health remains a major challenge in both countries. Ambitious climate policies have already delivered significant co-benefits to air quality in the past. Future net zero or carbon neutrality policies may offer opportunities to contribute to improved air quality towards meeting the WHO guidelines. However, some climate policies have potentially negative impacts on air quality

    Aqpet — An R package for air quality policy evaluation

    Get PDF
    Evaluating the effectiveness of clean air policies is important in the cycle of air quality management, ensuring policy accountability and informing future policy-making processes. However, such evaluations are challenging due to complex confounding factors such as varying weather conditions or seasonal or annual changes in air quality unrelated to the policy implementation. To address this challenge, we developed 'aqpet', a R package designed to streamline the quantification of policy effects on air quality using observational data. The package 'aqpet' includes: (1) automated-machine learning to predict air pollutants under average weather conditions – a process term as "weather normalisation"; (2) augmented synthetic control method (ASCM) to quantify the actual policy impact on air pollution. 'aqpet' offers functions for data collection and preparation, building auto-machine learning models, conducting weather normalisation, model performance evaluation and explanation, and causal impact analysis using ASCM. 'aqpet' enables fast, efficient, and interactive policy analysis for air quality management.</p

    Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    Get PDF
    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1&ndash;2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05–0.07 Tg Fe yr<sup>−1</sup> in the preindustrial era to 0.11–0.12 Tg Fe yr<sup>−1</sup> in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC) regions of the ocean, the modeled Fe solubility remains low for mineral dust (< 1 %) in a base simulation but is substantially enhanced in a sensitivity simulation, which permits the Fe dissolution for mineral aerosols in the presence of excess oxalate under low acidity during daytime. Our model results suggest that human activities contribute to about half of the soluble Fe supply to a significant portion of the oceans in the Northern Hemisphere, while their contribution to oceans in high latitudes remains uncertain due to limited understanding of Fe source and its dissolution under pristine conditions

    Atmospheric delivery of anthropogenic bioavailable iron from mineral dust to the ocean

    Get PDF
    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. We firstly examined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). We then constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water, by using acidity as a master variable. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean. However, our modeled Fe solubility was significantly lower than that deduced from observations over the South Atlantic east downwind from the Patagonian dust source regions. Our modeled Fe solubility for dry deposition over the Atlantic is in good agreement the measurement, while that for wet deposition is significantly lower than the measurement. Our model results suggest that human activities contribute to about half of the soluble Fe supply to a significant portion of the oceans in the Northern Hemisphere, while their contribution to oceans in the high latitude remains highly uncertain due to limited understanding of dust blown off the coasts of Alaska, Iceland and the Patagonia desert.Poster abstract A23C-0310 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec
    corecore