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Highlights: 21 

Industrial processes have been identified as an important source of airborne PM.   22 

 23 

PM from different sites within the same industry may vary appreciably in composition.  24 

 25 

PM from different processes within the same industrial site can differ substantially. 26 

 27 

Local source profile measurements are needed for industrial PM source apportionment. 28 

 29 

 30 

  31 
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ABSTRACT 32 

This review summarises the different receptor models that have been adopted at industrial and 33 

urban sites to apportion the sources of particulate matter (PM) from industries. Industrial processes 34 

and those associated with industry (such as transportation) are an important source of airborne PM 35 

which includes trace elements, organic and elemental carbon, and PAHs. Industry also emits 36 

gaseous pollutants which form secondary aerosol in the atmosphere. Most published studies have 37 

employed chemical mass balance (CMB), positive matrix factorization (PMF) and/or principal 38 

component analysis (PCA) models as source apportionment tools. These receptor models were 39 

mostly applied to fine particulate matter (PM2.5) and PM10 compositional data, particularly the 40 

inorganic constituents. Some studies have combined two or more of these receptor models, which 41 

provides useful information on the uncertainties associated with different models. Industry has been 42 

reported to contribute from 0 to 70% of PM mass at industrial sites. It appears that some studies are 43 

unsuccessful in apportioning PM from industry, e.g., unable to distinguish industrial emissions from 44 

other sources. A critical evaluation of the literature data also showed that the choice of appropriate 45 

tracers for industry, both generically and for specific industries, varies between different PM source 46 

apportionment studies. This is not surprising considering the significant difference in source 47 

profiles of PM from different types of industry, which may compromise source apportionment of 48 

industrial emissions using CMB with non-local source profiles. It may also affect the attribution of 49 

industrial emissions in multivariate statistical models (e.g. PMF and PCA). It is concluded that a 50 

general classification of the source “industry” is rarely appropriate for PM source apportionment. 51 

Indeed, such studies may even need to consider the different processes within a particular industry, 52 

such as a steelworks, which emit PM with significantly different chemical signatures. It is suggested 53 

that future source apportionment studies should make every effort to measure source profiles of PM 54 

from different industrial processes, and where possible, use multiple models in order to more 55 

accurately apportion the source emissions from industry.  56 

Keywords:  Source apportionment; industrial emissions; receptor modelling; metals; particulate 57 

matter; steel industry58 
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1.  INTRODUCTION 59 

Airborne particulate matter (PM) is a complex pollutant emitted directly from anthropogenic and 60 

natural activities (Poschl, 2005) or formed indirectly as secondary aerosol (Harrison and Yin, 2000). 61 

Particulate pollutants are composed of a complex mixture of substances with diverse physical, 62 

chemical and biological composition. A number of health problems have been associated with 63 

exposure to PM. For example, epidemiological studies have found strong correlations between 64 

concentrations of PM and hospital admissions and mortality due to respiratory and cardiovascular 65 

diseases (Pope and Dockery, 2006).  66 

 67 

Rapid economic and industrial developments have led to increased energy consumption, emissions 68 

of air pollutants and poor air quality in major cities of the world, especially in developing countries 69 

(Chan and Yao, 2008). Hence, there is a compelling need for quantification, identification and 70 

apportionment of these pollutants in order to facilitate their reduction through proper management 71 

plans. Emission inventories and chemistry-transport models are important tools in the evaluation of 72 

particulate matter pollution. However, these models have some limitations, e.g., due to the fact that 73 

important sources of PM are fugitive and hence often poorly quantified (Almeida et al., 2005). 74 

Additionally, gas-to-particle transformation models are not always able to describe adequately the 75 

contribution from secondary aerosol.  Therefore, receptor modelling remains an important tool. 76 

Receptor modelling uses physical and chemical characteristics of air pollutants to identify and 77 

apportion their contributing sources. The two generic method types of receptor models are the 78 

Chemical Mass Balance (CMB) model (Watson et al., 2002) and factor analytical methods (Hopke, 79 

2003). The latter includes Principal Component Analysis-Absolute Principal Component Scores 80 

(PCA-APCS) (Thurston and Spengler, 1985; Garcia et al., 2006), Positive Matrix Factorization 81 

(PMF) (Paatero and Tapper, 1994) and UNMIX (Henry, 1997, 2002).  82 

 83 

Application of receptor models for source apportionment of PM has been well established in 84 

published pollution studies (Viana et al., 2008a; Yatkin and Bayram, 2008; Mansha et al., 2012; 85 
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Belis et al., 2013, 2014; Pant and Harrison, 2012; Pant and Harrison, 2013). Industry has frequently 86 

been reported to be one of the important sources of airborne PM, alongside other sources such as 87 

traffic, crustal material, secondary aerosol, sea spray, incineration, fuel oil burning, biomass 88 

burning, and coal combustion (Harrison et al., 2003; Marcazzan et al., 2003; Qin and Oduyemi, 89 

2003; Chio et al., 2004; Karar and Gupta, 2007; Pant and Harrison, 2012), particularly in industrial 90 

cities (Oravisjarvi et al., 2003; Querol et al., 2007; Tsai et al., 2007; Alleman et al., 2010). In EU 91 

member states, industrial processes are the second and third largest source of primary PM2.5 and 92 

PM10 respectively (http://www.eea.europa.eu/data-and-maps/figures/sector-contributions-of-93 

emissions-of-2).  The objective of this review is to examine critically the application of various 94 

receptor models used for source apportionment of particulate matter from industry. It will first give 95 

an overview of the emitted PM pollutants from industries and particularly the iron and steel 96 

industries. It will then review the receptor modelling of PM from industries. Finally it will compare 97 

the PMF profiles used in the literature with the USEPA SPECIATE database for different processes 98 

for iron and steel-making in order to evaluate the results from current receptor modelling on 99 

industrial pollutants from this source. 100 

 101 

2.  INDUSTRIAL EMISSIONS OF PARTICULATE MATTER POLLUTANTS 102 

In this section, the major types of PM-related pollutants will be briefly introduced. It will also 103 

include a specific exemplar industry, iron and steel manufacturing, which has been the subject of 104 

several studies. 105 

 106 

2.1  Major Particulate Phase Pollutants from Industries 107 

There are many types of industry. Major primary industries that contribute to PM emissions include 108 

but are not limited to: manufacturing (including automotive, steel and metal-making industries), 109 

aerospace, agriculture, chemical, construction, energy. Particulate phase pollutants from industries 110 

include metals (Querol et al., 2007; Cetin et al., 2007), OC/EC (organic carbon, elemental carbon), 111 

PAHs (Rehwagen et al., 2005; Jang et al, 2013), and water soluble ions (Querol et al., 2002). 112 
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2.1.1 Trace metals  113 

Trace metals are one of the most characteristic chemical species associated with PM emission from 114 

many industries and are the major tracers used in many receptor modelling studies. Trace elements 115 

in industrial PM emission are related to the handling and processing of raw materials, handling of 116 

intermediate products and production of end products.  117 

 118 

EEA (2012) reported that industrial processes make a significant contribution to the total EU-27 119 

emissions of heavy metals (36% Pb, 25% Cd, and 41% Hg), despite significant reductions since 120 

1990. In Canada, industrial processes account for 72%, 79% and 32% of total emissions of Pb, Cd 121 

and Hg (http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=0EC58C98-1). Metal production is 122 

one of the major industrial processes contributing the emissions of total trace elements such as Cd, 123 

Cr, Cu, Hg, Ni, Se, V, and Zn in the UK in 2009 (Table 1). A study by Querol et al. (2007) also 124 

showed a number of trace elements in airborne PM are associated with industrial emissions in 125 

Spain.  126 

 127 

Analysis of airborne PM close to steel plants has shown that Fe, Mn, Zn, Pb, Cd and K are 128 

associated with emissions from the steel and iron plants. Microscopic analysis of individual 129 

particles has confirmed the presence of individual Fe-rich particles close to steel plants. For 130 

example, Moreno et al. (2004) identified iron spherules in both fine and coarse PM fractions at a 131 

steelworks in Port Talbot, South Wales, UK; Ebert et al. (2012) observed a significant fraction of 132 

individual iron oxides and iron mixtures in airborne PM near a steel industry in Duisburg, Rhine-133 

Ruhr area, Germany. Elevated concentrations of some elements at the steel industry sites derive 134 

from the raw materials being used for steel production. For example, raw materials including iron 135 

ores (FeO, Fe2O3, Fe3O4), limestone (CaCO3) and dolomite (CaMg(CO3)2) are used in a blast 136 

furnace (BF) while lime (CaO) and fluorspar (CaF2) are used in a Basic Oxygen Steel plant 137 

(Machemer, 2004). Integrated steel plants are also known for high emissions of mercury (Pacyna 138 

and Pacyna, 2002; Themelis and Gregory, 2002; Borderieux et al., 2004). Asia and Europe are the 139 
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regions where steel industries contribute most to the global mercury budget (Pirrone et al., 2001; 140 

Pacyna et al., 2006). Mukherjee et al. (2008) reported that annual mercury emissions from iron and 141 

steel industries in India increased by 25% between 2000 and 2004.   142 

 143 

2.1.2 Organic/elemental carbon (OC/EC) 144 

Carbonaceous particles comprising OC and EC are another pollutant generated from industrial 145 

emissions. Some of the OC/EC are directly emitted from particular industrial processes and some 146 

are associated with relevant activities of industries (see Section 2.3). Globally, industries contribute 147 

about 10% and 15% of OC and BC (black carbon) emissions respectively (Bond et al., 2004). In 148 

early 21st century China, industrial BC emissions arise primarily from uncontrolled coal-fired 149 

stokers and from the production and use of coke in the iron and steel industry; total coal-derived 150 

emissions are 83 Gg (85% of the industrial sector total of 97 Gg) (Streets et al., 2001). 151 

 152 

Tsai et al. (2007) measured elevated concentrations of OC and EC at the cold forming unit of an 153 

integrated steelworks in southern Taiwan. Highly time-resolved ambient measurements made at a 154 

fence-line site adjacent to a large coke production plant in the USA also revealed high 155 

concentrations of OC (40% of total measured PM2.5) and EC (25% of measured PM2.5) (Weitkamp 156 

et al., 2005).  157 

 158 

Polycyclic Aromatic Hydrocarbons (PAHs) are a group of organic compounds that are mainly 159 

produced by incomplete combustion and pyrolysis of organic material (Manahan, 2009). Industrial 160 

processes are a minor source (5%) of PAHs in the UK in 2008 (AEA, 2010) and contributes 9% of 161 

PAHs in the EU in 2011 (EEA, 2012). The most important industrial sources of PAHs include 162 

primary aluminium and coke production (e.g. as part of iron and steel production), waste 163 

incineration, cement manufacture, petrochemical industries, creosote and wood preservation, 164 

bitumen and asphalt industries, rubber tyre manufacturing, and commercial heat/power production 165 

(European Commission, 2001) and paper mills (Fauser et al., 2011). The PAH emission factors are 166 
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affected by incoming fuel, the manufacturing process, and the air pollution control devices 167 

(Ravindra et al., 2008). The significantly higher PAH levels at an industrial site than at control site 168 

and the La Plata city centre in Argentina also suggest that the refinery and petrochemical plants are 169 

important sources of PAHs (Rehwagen et al., 2005).  170 

 171 

2.1.3  Water soluble ions 172 

Water soluble ions have been observed at significant concentrations in industrial sites (Kumar et al., 173 

2001; Oravisjarvi et al., 2003; Samara et al., 2003; Karar and Gupta, 2007; Gildermeister et al., 174 

2007; Viana et al., 2008b; Amato et al., 2009; Zeng et al., 2010; Pancras et al., 2013). K and Cl 175 

have been suggested to be associated with sinter plant emissions (Dall’Osto et al., 2008; Hleis et al., 176 

2013). 177 

 178 

2.2  PM Pollutants from Different Processes within a Particular Industry: Steel 179 

manufacturing as an example 180 

A modern integrated plant is usually a complex operation, with more than one industrial process 181 

unit. For example, steel manufacture involves coke production, sintering, blast furnaces and basic 182 

oxygen furnace steelmaking (BOF). Sintering involves mixing iron ores, filter dusts and mill scale 183 

all fused together as appropriate feedstock for the BF (Brigden et al., 2000), while in coking 184 

processes, pulverized bituminous coal is used as fuel in order to reduce iron oxides and remove 185 

volatile impurities (http://ecm.ncms.org/ERI/new/IRRironsteel.htm). The BF is a high temperature 186 

driven process where metallic iron reduction from the oxide form takes place by burning with coke 187 

produced in the coking process. The steelmaking section involves addition of various alloying 188 

elements to give the finished materials the combination of properties desired. This takes place in 189 

three ways, i.e. the BOF for processing pig iron and the electric arc furnace (EAF)-for recycled 190 

materials and the open hearth furnace (OHF) where excess carbon and other impurities are burnt out 191 

of the pig iron to produce steel. Presently, about 70% of the world steel is produced from BOF 192 

while 29% comes from EAF (http://www.worldcoal.org/coal/uses-of-coal/coal-steel/).  193 
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Each unit may emit PM with specific characteristics. Figure 1 shows the source profiles of PM from 194 

two industrial processes in a steel plant and charcoal manufacturing from the USEPA SPECIATE 195 

database. There are significant differences in the emission profiles. For example, BOF with an 196 

electrostatic precipitator produces high concentrations of sulphate and Si, whereas BOF without 197 

control emits high concentrations of Fe and Mn but lower concentrations of sulphate and Si; a sinter 198 

plant generates high emissions of Fe, Pb, K and Cl, whereas charcoal manufacturing (not 199 

necessarily for a steel plant) has a high concentration of Al, Ca, and Se (Figure 1). A recent study 200 

by Tsai et al. (2007) also suggested that K and Pb, which contribute a significant percentage (15 and 201 

2 %) to the total observed particle mass, are associated with the sintering process. Similarly, 202 

Oravisjarvi et al. (2003) found that the sinter plant contributes 96% and 95% of the total measured 203 

concentrations of Pb and Cd in PM at Rahee, Finland. The study of Machemer (2004) showed 204 

elevated concentration of Fe, Al, Si, S and Zn at sections close to both BOF and blast furnaces (BF). 205 

At the coke making process, major elements observed by Tsai et al. (2007) were S, Fe and Na. In 206 

the cold forming aspect of the iron and steel industry, major elements observed in the particles were 207 

S, Fe, Na, K and Ni. The hot forming process showed a high abundance of S, Fe, Na and Ca (Tsai et 208 

al., 2007).  These reports highlight the importance of using local profiles for CMB type models, and 209 

provide useful references for identifying tracers for factor analysis-based models. More detailed 210 

discussion on these aspects will be given later. 211 

 212 

2.3  PM Pollutants from Industrially Related Activities 213 

When considering PM emission from a particular industry, one should also consider the other 214 

processes that are associated with that industry, for example, transportation of raw materials and 215 

end products and energy consumption. This leads to primary emission of combustion aerosols, 216 

including vehicular emission,s as well as re-suspended dust. Based on emission reports by EU 217 

countries under the CLRTAP and NEC Directive, EEA (2012) estimated that 36%, 25%, and 41% 218 

of the Pb, Cd and Hg in the EU is emitted from energy use in industry. It is however challenging to 219 

apportion the emissions from energy use in industry relative to non-industrial sources. It is also 220 
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difficult to distinguish the re-suspended dust from the industry itself and those from other processes 221 

such as wind-blown dust and the dust generated from working agricultural land.  Dust resuspension 222 

from raw material transportation is especially relevant in the case of the ceramic industry.  223 

 224 

Apart from the primary particulate pollutants discussed above, industries are also known for 225 

emission of gaseous pollutants such as carbon monoxide (CO), sulphur dioxide (SO2), nitrogen 226 

oxides (NOx) and hydrogen gas (H2), and volatile organic carbon (Ogulei et al., 2006; Ogulei et al., 227 

2007; Tsai et al., 2008; Johansson and  Söderström, 2011; Pancras et al., 2013). Some of these 228 

gaseous pollutants can be transformed into secondary compounds which are commonly detected in 229 

urban aerosols. It is very challenging for receptor modelling to estimate how much of the secondary 230 

aerosols are from the primary pollutants emitted from different industries.  231 

 232 

3.  RECEPTOR MODELLING OF PM FROM INDUSTRIAL EMISSIONS  233 

3.1.  Industrial Sites 234 

Table 2 summarizes different methods of receptor modelling applied to ambient PM measurements 235 

at industrial sites all over the world. The types of industries where receptor monitoring sites were 236 

located include steelworks, metallurgical plants, oil refineries, petrochemical works and small 237 

factories. Most of the studies collected PM10 or PM2.5 samples, with a few also collecting data on 238 

total suspended particles (TSP) or PM2.5-10. Trace metal concentrations were often used as the 239 

source data for receptor modelling (Table 2). OC/EC and ionic components were also included in 240 

combination with the metals in some studies. A few of the studies included PAHs as source data. 241 

Several types of models have been used including PCA, PCFA (Principal Component/Factor 242 

Analysis), CMB, Nested CMB, PMF or Multilinear Engine-2 (ME-2).  243 

 244 

Elevated PM mass concentrations have been observed at some industrial sites compared to 245 

residential stations. For example, Xue et al. (2010) reported that the annual PM10 concentrations 246 

ranged from 131 to 179 µg m-3 at industrial sites compared to 86 µg m-3 at a rural background site 247 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

in Panzhihua, China. Kim and Jo (2006) showed that the average PM10 mass levels was 81 and 71 248 

µg m-3 during winter and summer at an industrial site in Pohang, Korea compared to 52 and 42 µg 249 

m-3 observed at a residential site. Yatkin and Bayram (2008) found that PM10 mass levels were 80 250 

µg m-3 at an industrial site, which is about twice that of a suburban site in Izmir, Turkey. Querol et 251 

al. (2006) reported that the PM10 mass level at an industrial site (Changqian, China) was 197 µg m-3, 252 

which was 41 µg m-3 higher than that at an urban site (Hankou, China). An extremely high PM10 253 

concentration, 305 µg m-3, was also reported at an industrial site in China (Zeng et al., 2010). It is 254 

apparent that many of these studies conducted at both industrial and residential/background/urban 255 

sites report mass levels of PM10 greater than the European Union 24-hour mean Limit Value of 50 256 

µg m-3.  257 

 258 

The sources (factors) identified in different studies include industry, fuel/oil/coal combustion, 259 

traffic (including exhaust and non-exhaust emissions), crustal (soil/dust/minerals), secondary, 260 

marine and waste incineration. Literature reports have identified many different types of sources, 261 

some of which are similar but with different terminology (e.g., Kim and Jo, 2006; Querol et al., 262 

2006; Ogulei et al., 2006; Viana et al., 2008; Lim et al., 2010). To simplify the comparisons, we 263 

also combined some of the sources together to report in Tables 2 and 3. The details of such 264 

combinations are shown in the footnotes of Tables 2 and 3. If one or more sources are not classified 265 

into one of the categories in Tables 2 and 3, they are listed as “others”. “Others” also include mixed 266 

sources such as metallurgy/fossil fuel combustion and waste incineration/marine aerosol by Kim 267 

and Jo (2006), steel and fuels by Yatkin and Bayram (2008), incineration and Pb-related industry by 268 

Lim et al. (2010), and regional and marine by Viana et al. (2008b); vehicle and industrial oil 269 

burning by Lodhi et al. (2009). 270 

 271 

In some cases, up to 48% of the source contributions were not identified, suggesting that the model 272 

resolution was not good enough. This could be due to inadequate data (e.g. insufficient samples, 273 

poor quality analytical data or inappropriate sets of analytes) causing a failure of the modelling. 274 
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A few studies have adopted two or more receptor modelling approaches for source apportionment. 275 

Some of them produced similar results from different models, such as Viana et al. (2008) and 276 

Callen et al. (2009). However, source contributions estimated in some studies (e.g., Yatkin and 277 

Bayram, 2008; Srivastava and Jain, 2008) are significantly different using different models. In the 278 

latter cases, it is possible that one of the models or both failed to produce satisfactory resolution 279 

and/or that the datasets are insufficient to resolve the sources. For application of the multivariate 280 

statistical models (PCA, PMF) it is strongly advisable for the ratio of the number of independent 281 

samples to the number of species entered in the model to exceed three (Thurston and Spengler, 282 

1985), but this guideline is not observed in all cases, leading potentially to model instability. 283 

The reported contribution of industry to the PM mass is highly variable. Most studies have 284 

apportioned less than 10% of PM to industrial sources (Table 2). A very low industrial contribution 285 

of 1% has been reported (Ogulei et al., 2006; Gupta et al., 2007). In one case, no contribution from 286 

industry was identified at an industrial site (Samara et al, 2003). In Hammond et al. (2008), iron–287 

steel manufacturing/waste incineration together contributed 0.1 and 4% to PM2.5 at East and 288 

Southwest Detroit, respectively. In Callen et al. (2009), industry and traffic sources were identified 289 

as a single factor. In these studies, the specific contribution from industry cannot be ascertained. It 290 

is clear that in some studies, the contribution of PM from “industry” is beyond the resolution 291 

capabilities of the RMs used (contributions of 1-2% or less). In Lodhi et al. (2009), the contribution 292 

to PM2.5 from the steel industry was resolved to be 8% but the full contribution from industries must 293 

be more than 8% because another mixed source include industrial emissions. Several studies have 294 

apportioned more than 10% of PM to industry (Alleman et al., 2010; Viana et al., 2008b; Chung et 295 

al., 2006; Yatkin and Bayram, 2008; Karar and Gupta, 2007; Oravisjarvi et al., 2003). The highest 296 

contribution from industry to ambient PM reviewed in this study was estimated to be 70% by Cetin 297 

et al. (2007).  298 

 299 

There are many reasons for the large difference in the apportioned contributions of PM from 300 

industry including: (i) distance of the industrial units to the sampling sites; (ii) meteorological 301 
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conditions (e.g. whether the site is downwind or upwind); (iii) particulate emission control 302 

measures in place in most industrial plants. Another potentially crucial reason is the choice of 303 

industrial tracers in the receptor models in these studies. Multiple emission sources of certain 304 

marker elements could create conflicts during apportionment exercises. This will be discussed in 305 

more detail in the next section.  306 

 307 

The contribution of combustion sources, encompassing stationary burning of oil, fuel, wood or coal, 308 

to the total PM ranges from 0.4 to 58% (Table 2). Combustion is reported to be a major source 309 

(>20%) of PM in some of the studies (e.g. Xue et al., 2010; Karar and Gupta, 2007; Querol et al., 310 

2006; Mazzei et al., 2008; Chung et al., 2006; Samara et al., 2003; Castanho and Artaxo, 2001). 311 

Nested CMB applied for source apportionment of PM10 by Xue et al. (2010) at industrial sites in 312 

China indicated coal combustion ash to represent the largest source of PM10 (26%). However, it 313 

needs to be emphasized that the influence of combustion sources on ambient PM may or may not be 314 

directly related to industry. No contribution from combustion was identified in a few studies 315 

(Oravisjarvi et al., 2003; Cetin et al., 2007; Viana et al., 2008b; Yatkin and Bayram, 2008; Alleman 316 

et al., 2010). This could be due to an insignificant contribution from the combustion sources but 317 

model bias or incapability of the models to identify the source could not be ruled out.  Jang et al 318 

(2013) found a similarity in the PAH congener profiles of coal combustion and steel industry 319 

emissions, which was resolved only by inclusion of a large number of congeners.  320 

 321 

The traffic source is often a major source of PM even at the industrial sites. It is typical of industrial 322 

areas to have high traffic flows due to transportation of raw and processed goods as well as 323 

personnel mobility. Heavy-duty vehicles, known large emitters of particles (Charron and Harrison, 324 

2005), are often used for transportation of raw materials and processed goods in industry. This is in 325 

addition to the contribution from vehicular emissions not associated with the industry and long-326 

range transported sources at those sites. 327 

 328 
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Particles with a crustal signature comprised of soil and road dusts as well as cement dust are another 329 

important source of PM at industrial sites. Most studies listed in Table 2 have attributed an 330 

appreciable proportion of PM, especially in PM2.5-10, PM10 and TSP fractions, to crustal matter. Re-331 

suspended dusts from roads and all forms of construction works, and windblown soil at the 332 

industrial sites are probable contributors. Vehicular movements at the industrial sites could increase 333 

dust particles through resuspension processes (Charron and Harrison, 2005). However, it is difficult 334 

to apportion the crustal matter from industry due to the overlapping signatures of the possible 335 

contributing sources. 336 

 337 

3.2  Urban/Residential Sites 338 

As stated above, PM mass concentrations in a number of selected studies in residential areas were 339 

generally lower compared to the values reported at the industrial sites. Table 3 compiles selected 340 

source apportionment studies carried out in urban/residential areas. Despite the fact that studies 341 

presented in Table 3 were conducted around the perimeter of residential/urban areas sites, an 342 

industrial factor was still prominent in some of the receptor modelling studies. The percentage 343 

contributions assigned to industry range between 2 and 37%. Elevated percentages assigned to the 344 

industrial source in the residential areas might be related to prevailing meteorological conditions 345 

(wind direction) during sampling, and the source to receptor site distances maximising the impact 346 

through local dispersion processes (e.g. from an elevated point source) (Almeida et al., 2005; 347 

Yatkin and Bayram, 2008). 348 

 349 

Table 3 also shows that some studies were unable to differentiate between industry and traffic by 350 

the receptor models used and therefore reported them as a single source (Almeida et al., 2005; 351 

Callen et al., 2009). Coal combustion is another significant source of PM pollution in the residential 352 

areas, especially in studies from India and China (Chowdhury et al., 2007; Xue et al., 2010).  This 353 

may arise partly from industrial processes.  354 

 355 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 
 

4.  PM MARKER ELEMENTS FOR SOURCE APPORTIONMENT OF 356 

  INDUSTRIAL EMISSIONS 357 

The choice of marker elements for industrial factors/sources in source apportionment is a crucial 358 

aspect of receptor modelling. In source apportionment studies, different authors have chosen 359 

different marker elements for “industry” (as a general term), for example: As, Zn, Pb, Cs, Tl, Zr, 360 

Hf, Ce and Cu (Almeida et al., 2005; Viana et al., 2008b); Pb, Co, Ce, Cr (Hien et al., 2001);  Zn, 361 

Pb, Si, Ni, Mn, Fe, S (Castanho and  Artaxo, 2001); Cd, Pb, Cr, Ni (Heal et al., 2005); Zn and Pb 362 

(Zn and Pb smelters, Connell et al., 2006; Kim et al., 2007; Mazzei et al., 2008). It needs to be 363 

emphasized that “industry” here refers to a general term rather than a specific industry. A more 364 

comprehensive list of marker elements attributed to industrial sources is shown in Tables 2 and 3.  365 

 366 

A range of marker elements have been used for the steel industry. For example, in the study of Xue 367 

et al. (2010) at a mixed industrial location with iron and steel industries, Ti, Cr and Mn were used 368 

as markers for metallurgical industry. Tsai et al. (2007) and Oravisjarvis et al. (2003) used K, Pb, 369 

Fe, Ca, S/SO2 and Na as tracers for steel production. In the work of Cetin et al. (2007), Zn, Fe, Pb, 370 

Mn and Cd were used as steel industry fingerprints. The study by Hammond et al. (2008) adopted 371 

Zn, Fe, Mn, K and Pb as steel emission tracers, some of which are also used by other authors.  372 

 373 

There are several major issues arising from the above discussion on the choice of tracer elements 374 

for industries. The first issue is how “industry” is defined. “Industry” is in general referred to as one 375 

category of emission sources which encompasses a wide range of plants. It is clear that “industry” 376 

in one study is not necessarily the same as that in another study. In some cases, there is only one 377 

dominant industry that may affect the PM in a particular area. This should to some extent facilitate 378 

the choice of tracer elements for receptor modelling. However, frequently, there is more than one 379 

industry in a particular area. Since each industry may emit PM with sharp differences in source 380 

profiles, using a single set of tracer elements to distinguish the source contribution from “industry” 381 

as a whole can be problematic.  382 
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The second issue is related to different emission source profiles from industrial processes in a 383 

particular industrial unit. Marker elements for industries depend on the nature of different processes 384 

and activities taking place within the industry (Querol et al., 2007). As shown in Figure 1, different 385 

processes at a steel and iron plant can have significant differences in their source profiles. 386 

Therefore, using a single set of elements as tracers for a particular industry as a whole can 387 

sometimes be problematic as well.  388 

 389 

The third issue is the presence of abatement plant for a particular industrial process in a particular 390 

industrial unit. For example, the source profiles of BOF with an electric precipitator are 391 

significantly different to those without control (Figure 1). This may to some extent support the 392 

choice of different tracer elements for a particular industrial process in different studies but this 393 

choice needs to be justified by actual source profile measurements.  394 

 395 

The fourth issue of concern is that the multiple sources of some elements that have been used as 396 

marker elements may lead to wrong attribution of a source. For example, K is emitted from burning 397 

wood or other biomass, vehicular sources, sinter plants and incinerators (Hays et al., 2005; Lim et 398 

al., 2010; Hleis et al. 2013). Fe is a component of crustal matter and Fe, Cu, Zn, and Ba are 399 

associated with non-exhaust emissions from road traffic (Thorpe and Harrison, 2008; Pant and 400 

Harrison, 2013). OC/EC are emitted from many sources including road traffic. Calculation of 401 

enrichment factors (EF) can be useful to differentiate natural and anthropogenic emissions (Kothai 402 

et al., 2011). The ratios of some specific elements may also be employed to differentiate steelworks 403 

emissions from either traffic or other anthropogenic sources. Connell et al. (2006) used the Mn/Zn 404 

ratio to identify steelworks emissions in PM2.5 sampled at Steubenville, OH, USA. Cl and S are 405 

sometimes used as tracers for industries (Prati et al., 2000; Chung et al., 2006) but there are 406 

obviously many other potential sources for these elements. It is therefore difficult to resolve the 407 

emission sources of elements such as K, Cl, S and Fe in receptor modelling except by inclusion of 408 
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other tracers. A typical example is the use of levoglucosan along with K as tracers for biomass 409 

burning (Zhang et al., 2010; Harrison et al., 2012). 410 

 411 

The summary in Tables 2 and 3 shows a wide range of tracer elements for “industries”. This to 412 

some extent is justifiable because different industries have different chemical signatures (tracers). 413 

Many previous receptor modelling studies appear to over-simplify the source apportionment of 414 

industrially emitted PM.  There is a tendency in some studies using PMF or PCA methods to 415 

associate factors containing trace metal signatures with “industry” without supporting information 416 

on industrial emission profiles. We recommend that the choices of tracers for industries should be 417 

supported and justified by comprehensive source profiles from major industries in the area of 418 

interest.  419 

 420 

In the following, we will quantitatively compare the profiles of PMF factors used for source 421 

apportionment of PM from steel production processes with those of the USEPA SPECIATE source 422 

profile. Our intention is to further examine the appropriateness of the choice of tracer elements for 423 

different processes associated with steel industry activities. 424 

 425 

5.  PMF FACTORS VERSUS USEPA SPECIATE PROFILES FOR STEEL 426 

  PRODUCTION PROCESSES 427 

Here, we compare the factor profiles identified by PMF with USEPA SPECIATE source profiles 428 

from general steel production processes, sintering and coking processes and a blast furnace 429 

(Figures 2a-2d). We have chosen these processes mainly because of the data availability (both the 430 

USEPA source profiles and the PMF factors). Only a few PMF studies have identified the steel 431 

industry and/or process units related to the steel industry as a source. Some studies have identified 432 

a steel industry factor but this was mixed with another source such as waste incinerator. In this 433 

latter case, the factor was not included in the comparison in Figure 2. It should be emphasised that 434 
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these PMF factors are different from ambient concentrations of PM components and represent the 435 

fractional composition of the factor attributed to the specific source. 436 

 437 

Figure 2a shows that there are some differences in the PMF profiles of steel production with 438 

general iron production source profiles in the USEPA SPECIATE database, but most of the 439 

elements and in particular the tracer elements, including Fe, Zn and Mn, fall within the 1:10 and 440 

10:1 lines. Some elements such as Ni, Cr, Cu and sometimes K are outside of the 10:1 lines.  This 441 

may be linked to their use in specific processes not represented in either the PMF or SPECIATE 442 

profiles.  The level of information associated with each dataset is insufficient to make a specific 443 

judgement. 444 

 445 

Figure 2b shows that the Fe content in the PMF profile of the sinter plant factor from Alleman et 446 

al. (2010) is similar to that in USEPA SPECIATE database. However, most of the other elements 447 

are outside of the 1:10 line. In terms of coking, there seem to be large discrepancies between the 448 

Alleman et al. (2010) PMF factor profile with that in the USEPA SPECIATE database (Figure 2c).  449 

This may result from differences in the trace element composition of feedstocks for the respective 450 

plants that were sampled. The PMF blast furnace factor (Steel 1) profile from Taiwo et al. (2014) 451 

agrees very well with the USEPA SPECIATE profiles from the blast furnace process (Figure 2d). 452 

Fe, K, Mn, and Zn are close to the 1:1 line, while Ni and Cu were outside of the 1:10 line and Cr 453 

was not identified in the PMF factor. 454 

 455 

In the USEPA SPECIATE/PMF scatter plot shown in Figure 2(a-d), good agreement was observed 456 

for some marker elements adopted in different studies, suggesting that the choice of relevant factors 457 

was appropriate. However, some discrepancies were also observed for tracers related to steelworks 458 

processes. This may be caused by several factors.  459 

 460 
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One reason may be differing materials inflow at the steelworks processing units reported in the 461 

USEPA SPECIATE database and the published work, which may result in a dissimilar chemical 462 

profile of PM emissions from each process from plant to plant. Unfortunately, there are limited 463 

source profile data available in the literature to evaluate this possibility. The relationship of the 464 

source profile measured directly upon emissions from the sintering process from Tsai et al. (2007) 465 

against USEPA SPECIATE data is shown in Figure 3.  Most elements are within 1:10 and 10:1 466 

lines except for Cu and Ba, which gives some confidence in the comparison of source profiles from 467 

different studies.  However, there are clear differences for many of the elements. 468 

 469 

A second reason may be related to pollution control systems in place at some steelworks. On the 470 

issue of pollution control systems, the USEPA SPECIATE data showed that there are significant 471 

differences in source profiles of PM from BOF with and without an electrostatic precipitator 472 

(Figure 1). Information on the pollution control system at the steelworks foundry, sintering and 473 

EAF are not revealed in the USEPA SPECIATE database. However, no control system was in 474 

place at the coking plant represented in the USEPA SPECIATE data.  475 

 476 

These above discussions indicate that even with the PMF receptor modelling, it is preferable to 477 

obtain the source profiles from on-plant measurements to support the choice of factors and tracer 478 

elements. 479 

 480 

7.  CONCLUSIONS AND RECOMMENDATIONS 481 

Industrial emissions are an important source of particulate substances including metals, 482 

carbonaceous species and PAHs in the atmospheric environment. Receptor models such as CMB, 483 

PMF and PCA have been used to quantify the contribution of industrial emissions to ambient PM. 484 

A few studies have combined two or more models which makes it possible to compare the 485 

performance of each model. Receptor modelling at industrial sites has assigned between 0 and 71% 486 

of PM to industrial emissions. This assignment does not generally include the likely contribution of 487 
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industrially-related activities such as combustion and transportation of materials. A comprehensive 488 

evaluation of different receptor modelling studies at industrial sites demonstrated that many 489 

different elemental profiles have been attributed to industry, often without any check against known 490 

source profiles for local industrial processes. This makes it difficult to evaluate the results from 491 

these source apportionment studies, in particular when more complete information including the 492 

control technologies at the plants and the source profiles of PM from the industries around the 493 

receptor sites is not available.  494 

 495 

We suggest that in future receptor modelling of industrially emitted PM:  496 

 497 

(1) Where possible, multiple receptor modelling techniques are used in order to provide a means 498 

to evaluate the uncertainties. 499 

 500 

(2) Receptor modelling at paired sites, one close to an industrial site and a background site, are 501 

conducted to allow a quantitative evaluation of the impact of a particular industrial plant. 502 

 503 

(3) Local source profiles of PM from different industries which may contribute to the receptor 504 

site are measured to support the assignment of source profiles in non-CMB type modelling 505 

techniques. 506 

 507 

(4) More source profiles associated with different industrial processes in different industries 508 

should be measured to enhance the data available for use in CMB models and to assist source 509 

attribution in PCA, PMF and related models.  510 
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TABLE LEGENDS 878 

 879 

Table 1:   Contribution of each trace metal from industrial processes to total emissions and 880 

 their major sources in the UK based on 2009 United Kingdom National Atmospheric 881 

Emissions Inventory.  882 

 883 

Table 2:   Results of Source Apportionment (SA) with different receptor models at industrial 884 

  sites. 885 

 886 

Table 3:   Source Apportionment with different receptor models at residential sites (selected 887 

studies) with a reported industrial contribution. 888 

 889 

 890 

 891 

FIGURE LEGENDS 892 

 893 

Figure 1:   Source profiles of charcoal manufacturing, sinter plant and BOF plant (with 894 

electrostatic precipitator). From US EPA SPECIATE database. 895 

 896 

Figure 2:  Scatter plots of PMF factor profiles (in percentage) from published studies versus 897 

USEPA SPECIATE source profiles for (a) general steel production, (b) sinter plant, 898 

(c) coke plant and (d) and blast furnace. In Fig. 2a, Gildemeister et al. (2007) (1): 899 

site 1-Allen Park site; Gildemeister et al. (2007) (2): Dearborn site at Detroit 900 

industrial area, USA; PMF profile in Taiwo et al. (2014) (Fig. 2a) was a mixed factor 901 

comprising Steel 2 (BOS) and Steel 4 (sinter plant); PMF factor profiles in 902 

Gildemeister et al. (2007) were kindly provided by the authors; PMF profiles of 903 

iron/steel factor from Pancras et al. (2013) were estimated (so carries small 904 

subjective error) from concentration of each element (in ng m-3) in Fig. 3 in the 905 

original paper and the apportioned iron/steel factor concentration of 0.36 µg m-3 906 

(Table 4 of the original paper). PMF factor profiles of sinter plant (Fig. 2b) and coke 907 

dust (Fig. 2c) are from Alleman et al., (2010) and that of blast furnace is from Taiwo 908 

et al. (2014). The USEPA SPECIATE blast furnace profile: PM (0-38 µm) from kish 909 

graphite from blast furnace process in iron and steel manufacturing. Ni and Ba made 910 

negligible contribution to factor Steel 2 and 4 in Taiwo et al. (2014) so were not 911 

included in comparison (Fig. 2a); similarly Cr made negligible contribution to factor 912 

Steel 1 in Taiwo et al. (2014) so was not included in comparison (Fig. 2d). Please 913 

note that some elements were reported in USEPA SPECIATE source profiles but not 914 

in PMF factor profiles; and vice versa. In those cases, the data could not be shown in 915 

the figures. 916 

 917 

Figure 3:  Regression plots of USEPA SPECIATE vs Tsai et al. (2007) source profiles for the 918 

sintering process in the steel industry. 919 

 920 

 921 

  922 
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Table 1:  Contribution of each trace metal from industrial processes to total emissions and their 923 

major sources in the UK based on 2009 United Kingdom National Atmospheric Emissions 924 

Inventory.  925 

 926 

 Total 
Emissions 
(tonnes) 

Industrial 
contribution 

% 

 
Major sources 

As 13 93 Treated wood for industrial combustion; metal production; public 
electricity and heat production 

Cd 2 78 Non-ferrous metal production and iron and steel manufacture (as well as 
other forms of industrial combustion), energy production (include a 
significant proportion from waste combustion and fuel oil combustion for 
electricity generation) 

Cr 26 89 Coal combustion, iron and steel production in integrated works and in 
electric arc furnaces and the production of chromium based chemicals 

Cu 52 49 Metal production, combustion of lubricants in industry and coal 
combustion 

Pb 60 87 Metal production and combustion of lubricants in industry 

Hg 7 99 Iron and steel production processes, public electricity and heat production, 
waste incineration, the manufacture of chlorine in 
mercury cells, coal and other forms of industrial combustion 

Ni 83 54 Combustion of heavy fuel oil 

Se 31 92 Glass production and combustion for public electricity and heat production 

V 477 21 Fuel oil combustion 
Zn 339 72 Metal production and combustion in industry 

Note: this table is adapted from UK emissions of air pollutants 1970 to 2009 by AEA (2011): 927 

available at http://uk-air.defra.gov.uk/reports/cat07/1401131501_NAEI_Annual_Report_2009.pdf 928 

 929 

 930 

 931 

 932 
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Table 2: Results of Source Apportionment (SA) with different receptor models at industrial sites. 
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Note: NCMB-Nested chemical mass balance, CPF- Conditional Probability Function, PSCF- Potential Source Contribution Function. LMR-Least Multiple Regression, W-winter, S-summer; Sometimes 
two or more sources were grouped as one factor for example, in Kim and Jo (2006), Lim et al. (2010), Lodhi et al. (2009), Yatkin and Bayram (2008) and Viana et al. (2008b), in which the factor will be 
counted as “others”. For these reasons, readers are strongly advised to read the original articles for more details 
*, Different authors used different definition of this combustion source for example, coal, wood, oil, and gas combustion, and biomass burning; they were grouped together for simplicity in this 
review.**, this category includes all crustal element based source, for example, soil dust, road dust, cement or minerals.  
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Table 3: Source apportionment with different receptor models at residential sites (selected studies) with a reported industrial contribution. 
 

Authors Study 
Area 

Setting of 
Study Area  

SA Method  Parameter PM 
Size 

Marker 
element 

for 
industry 

PM 
conc. 

(µg/m3) 

Sources Contribution (%) 
 

           Combustion, 
coal, wood, 
oil, (cooking) 

Marine 
aerosol 

Traffic 
(Exhaust 
and  non- 
exhaust ) 

Secondary 
aerosol 

Crustal 
matter 

 

Industry Waste, 
Incineration 

Others 

Castanho, 
and  
Artaxo, 
2001 

Sao Paulo, 
Brazil 

Residential 
5.5 
millions 

APFA Metals, 
OC, EC 

PM2.5  
 
 

Zn, Mn, 
Pb, Fe, 
Ni, S 

30 w, 
15 s 
 

19  
21  

 28  
24  

23  
17  

25  
31  
 

5  
6  
 

  

Almeida 
et al., 
2005 

Bobadela, 
Portugal 

Residential PCA/MLRA Metals, 
OC, BC, 
Anions 

PM2.5 
PM2.5-10 

Zn, Cu, 
Sb, Pb 

24 
16 

8 
5 

8 
47 

22 25 
15 

16 
20 

0.2 
0.4 
 

 21 
13 
 

Alastuey 
et al., 
2007 

Tarragona 
harbour, 
Spain 

Harbour PCA-
MLRA 

Metals, 
Anions 

PM10 V, Ni, 
Mn, Co 

40  13 34  17 12   24 

Kim et al., 
2007 

Ohio 
River 
Valley, 
USA 

 
Residential 

PMF Metals, 
OC, EC, 
Ions 

PM2.5 Fe, Mn, 
Ca, SO4, 
Zn, Pb 

14   2.5 69 2.5 6  20 

Srivastava 
and Jain, 
2008 

Delhi, 
India 

Residential 
14 millions  

CMB Metals 
 
 

>1.6µm 
<1.6µm 

Fe, Mn, 
Cu, Cr, 
Ni, Pb 

   29 
62 

 68 
36 
 

3 
2 

  

Srivastava 
and Jain, 
2008 

Delhi, 
India 

Residential 
14 millions  

PCA Metals 
 
 

>1.6µm 
<1.6µm 

    23 
86 

 68 
10 

   

Yatkin 
and 
Bayram, 
2008 

Izmir, 
Turkey 

Sub-urban, 
3 millions 

PMF Metals PM2.5 Zn, Pb, 
Mn, Fe, 
V, Ni 

24  4 12  9   75 

Yatkin 
and 
Bayram, 
2008 

Izmir, 
Turkey 

Sub-urban, 
3 millions 

CMB Metals PM2.5 Zn, Pb, 
Mn, Fe, 
V, Ni 

20 w 
29 s 
 

13  
10  

6  
10  

71  
63  

 8  
15  

1  
2  

 0.4  
0.1 

Callen et 
al., 2009 

Zaragora, 
Spain 

Urban PCA-APCS 
Unmix 
PMF 

Metals, 
OC, EC,  
Ions, 
PAHs, 
NH4 

PM10  32 13 
 
 
12 

4 
 
10 
7 

  
 
15 
7 

 56 
 
65 
40 

  27 
 
9 
34 
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Zhang et 
al., 2013 

Beijing, 
China 

urban PMF Metals, 
anions, 
OC/EC 

PM2.5 OC, 
EC, Zn, 
Mn, 
and Cr 

135 30   26 15 25  4 

Note: W-winter, S-summer; Sometimes two or more sources were grouped as one factor, in which the factor will be counted as “others”. For these reasons, readers are strongly advised to read the 
original articles for more details; Different authors used different definition of this combustion source for example, coal, wood, oil, and gas combustion, and biomass burning; they were grouped 
together for simplicity in this review  
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Figure 1:  Source profiles of charcoal manufacturing, sinter plant and BOF plant (with electrostatic 
precipitator and uncontrolled). From US EPA SPECIATE database. 
  

0.001

0.01

0.1

1

10

100
W

e
ig

h
t 

p
e

rc
e

n
ta

g
e

, 
%

Charcoal manufacturing

Sinter plant

BOF-Electrostatic Precipitator

BOF-Uncontrolled



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

39 
 

 

  
(a) 
 
 

 
 
(b) 

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Ir
o

n
 a

n
d

 S
te

e
l P

M
F
 f

a
ct

o
r 

p
ro

fi
le

 (
%

)

US EPA SPECIATE Steel Foundry (No 9001110) profile (%)

General iron production

Gildemeister et al., 2007 (1)

Gildemeister et al., 2007 (2)

Pancras et al., 2013

Taiwo et al., 2014

Ti

Fe

Pb

CrCu

Ni

Cu

Cu

V

V

Ti

Pb

Al

Zn

Zn
S

Ni

Cr Ni

K

K
Ca

Mn

Ca

Fe

Fe

1:10 line
1:1 line

10:1 line

V

Cd
Cu

Al

NO3- Zn

Cr

S

K

K

Mg
Mn

Mg Cl

Cl

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

P
M

F
 f

a
c
to

r 
p

ro
fi

le
 (

%
)

USEPA SPECIATE (No. 2830110) profile (%) 

Sinter plant

S
Fe

Pb

Cu

Zn

10:1 line

1:1 line
1:10 line

As
Cr

Mn

Cd



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

40 
 

 
(c) 
 

 
(d) 
 
Figure 2: Scatter plots of PMF factor profiles (in percentage) from published studies versus 
USEPA SPECIATE source profiles for (a) general steel production, (b) sinter plant, (c) coke plant 
and (d) and blast furnace. In Fig. 2a, Gildemeister et al. (2007) (1): site 1-Allen Park site; 
Gildemeister et al. (2007) (2): Dearborn site at Detroit industrial area, USA; PMF profile in Taiwo 
et al. (2014) (Fig. 2a) was a mixed factor comprising Steel 2 (BOS) and Steel 4 (sinter plant); PMF 
factor profiles in Gildemeister et al. (2007) were kindly provided by the authors; PMF profiles of 
iron/steel factor from Pancras et al. (2013) were estimated (so carries small subjective error) from 
concentration of each element (in ng m-3) in Fig. 3 in the original paper and the apportioned 
iron/steel factor concentration of 0.36 µg m-3 (Table 4 of the original paper). PMF factor profiles of 
sinter plant (Fig. 2b) and coke dust (Fig. 2c) are from Alleman et al., (2010) and that of blast 
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furnace (Fig. 2d) is from Taiwo et al. (2014). The USEPA SPECIATE blast furnace profile: PM (0-
38 µm) from kish graphite from blast furnace process in iron and steel manufacturing. Ni and Ba 
made negligible contribution to factor Steel 2 and 4 in Taiwo et al. (2014) so were not included in 
comparison (Fig. 2a); similarly Cr made negligible contribution to factor Steel 1 in Taiwo et al. 
(2014) so was not included in comparison (Fig. 2d). Please note that some elements were reported 
in USEPA SPECIATE source profiles but not in PMF factor profiles; and vice versa. In those cases, 
the data could not be shown in the figures. 
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Figure 3: Regression plots of USEPA SPECIATE vs Tsai et al. (2007) source profiles for the 
sintering process in the steel industry. 
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A Review of Receptor Modelling of Industrially Emitted 
Particulate Matter 
 
Adewale M. Taiwo, Roy M. Harrison and Zongbo Shi   
 

HIGHLIGHTS 

Industrial processes have been identified as an important source of airborne PM.   
 
PM from different sites within the same industry may vary appreciably in composition.  
 
PM from different processes within the same industrial site can differ substantially. 

 
Local source profile measurements are needed for industrial PM source apportionment. 

 


