683 research outputs found
Surface-wave solitons on the interface between a linear medium and a nonlocal nonlinear medium
We address the properties of surface-wave solitons on the interface between a
semi-infinite homogeneous linear medium and a semi-infinite homogeneous
nonlinear nonlocal medium. The stability, energy flow and FWHM of the surface
wave solitons can be affected by the degree of nonlocality of the nonlinear
medium. We find that the refractive index difference affects the power
distribution of the surface solitons in two media. We show that the different
boundary values at the interface can lead to the different peak position of the
surface solitons, but it can not influence the solitons stability with a
certain degree of nonlocality.Comment: 8 pages, 14 figures, 15 references, and so o
Optimization of Battery Energy Storage to Improve Power System Oscillation Damping
A placement problem for multiple Battery Energy Storage System (BESS) units
is formulated towards power system transient voltage stability enhancement in
this paper. The problem is solved by the Cross-Entropy (CE) optimization
method. A simulation-based approach is adopted to incorporate higher-order
dynamics and nonlinearities of generators and loads. The objective is to
maximize the voltage stability index, which is setup based on certain
grid-codes. Formulations of the optimization problem are then discussed.
Finally, the proposed approach is implemented in MATLAB/DIgSILENT and tested on
the New England 39-Bus system. Results indicate that installing BESS units at
the optimized location can alleviate transient voltage instability issue
compared with the original system with no BESS. The CE placement algorithm is
also compared with the classic PSO (Particle Swarm Optimization) method, and
its superiority is demonstrated in terms of a faster convergence rate with
matched solution qualities.Comment: This paper has been accepted by IEEE Transactions on Sustainable
Energy and now still in online-publication phase, IEEE Transactions on
Sustainable Energy. 201
Forced Oscillation Source Location via Multivariate Time Series Classification
Precisely locating low-frequency oscillation sources is the prerequisite of
suppressing sustained oscillation, which is an essential guarantee for the
secure and stable operation of power grids. Using synchrophasor measurements, a
machine learning method is proposed to locate the source of forced oscillation
in power systems. Rotor angle and active power of each power plant are utilized
to construct multivariate time series (MTS). Applying Mahalanobis distance
metric and dynamic time warping, the distance between MTS with different phases
or lengths can be appropriately measured. The obtained distance metric,
representing characteristics during the transient phase of forced oscillation
under different disturbance sources, is used for offline classifier training
and online matching to locate the disturbance source. Simulation results using
the four-machine two-area system and IEEE 39-bus system indicate that the
proposed location method can identify the power system forced oscillation
source online with high accuracy.Comment: 5 pages, 3 figures. Accepted by 2018 IEEE/PES Transmission and
Distribution Conferenc
The convergence of subspace trust region methods
AbstractThe trust region method is an effective approach for solving optimization problems due to its robustness and strong convergence. However, the subproblem in the trust region method is difficult or time-consuming to solve in practical computation, especially in large-scale problems. In this paper we consider a new class of trust region methods, specifically subspace trust region methods. The subproblem in these methods has an adequate initial trust region radius and can be solved in a simple subspace. It is easier to solve than the original subproblem because the dimension of the subproblem in the subspace is reduced substantially. We investigate the global convergence and convergence rate of these methods
- …