43 research outputs found

    Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis

    Get PDF
    Triplet–triplet energy transfer (EnT) is a fundamental activation pathway in photocatalysis. In this work, we report the mechanistic origins of the triplet excited state of carbazole-cyanobenzene donor–acceptor (D–A) fluorophores in EnT-based photocatalytic reactions and demonstrate the key factors that control the accessibility of the 3LE (locally excited triplet state) and 3CT (charge-transfer triplet state) via a combined photochemical and transient absorption spectroscopic study. We found that the energy order between 1CT (charge transfer singlet state) and 3LE dictates the accessibility of 3LE/3CT for EnT, which can be effectively engineered by varying solvent polarity and D–A character to depopulate 3LE and facilitate EnT from the chemically more tunable 3CT state for photosensitization. Following the above design principle, a new D–A fluorophore with strong D–A character and weak redox potential is identified, which exhibits high efficiency for Ni(II)-catalyzed cross-coupling of carboxylic acids and aryl halides with a wide substrate scope and high selectivity. Our results not only provide key fundamental insight on the EnT mechanism of D–A fluorophores but also establish its wide utility in EnT-mediated photocatalytic reactions

    Minimizing the programming power of phase change memory by using graphene nanoribbon edge-contact

    Full text link
    Nonvolatile phase change random access memory (PCRAM) is regarded as one of promising candidates for emerging mass storage in the era of Big Data. However, relatively high programming energy hurdles the further reduction of power consumption in PCRAM. Utilizing narrow edge-contact of graphene can effectively reduce the active volume of phase change material in each cell, and therefore realize low-power operation. Here, we demonstrate that a write energy can be reduced to about ~53.7 fJ in a cell with ~3 nm-wide graphene nanoribbon (GNR) as edge-contact, whose cross-sectional area is only ~1 nm2. It is found that the cycle endurance exhibits an obvious dependence on the bias polarity in the cell with structure asymmetry. If a positive bias was applied to graphene electrode, the endurance can be extended at least one order longer than the case with reversal of polarity. The work represents a great technological advance for the low power PCRAM and could benefit for in-memory computing in future.Comment: 14 pages, 4 figure

    Minute-cadence Observations of the LAMOST Fields with the TMTS: III. Statistic Study of the Flare Stars from the First Two Years

    Full text link
    Tsinghua University-Ma Huateng Telescopes for Survey (TMTS) aims to detect fast-evolving transients in the Universe, which has led to the discovery of thousands of short-period variables and eclipsing binaries since 2020. In this paper, we present the observed properties of 125 flare stars identified by the TMTS within the first two years, with an attempt to constrain their eruption physics. As expected, most of these flares were recorded in late-type red stars with GBP−GRPG_{\rm BP}-G_{\rm RP} > 2.0 mag, however, the flares associated with bluer stars tend to be on average more energetic and have broader profiles. The peak flux (F_peak) of the flare is found to depend strongly on the equivalent duration (ED) of the energy release, i.e., Fpeak∝ED0.72±0.04F_{{\rm peak}} \propto {\rm ED}^{0.72\pm0.04}, which is consistent with results derived from the Kepler and Evryscope samples. This relation is likely related to the magnetic loop emission, while -- for the more popular non-thermal electron heating model -- a specific time evolution may be required to generate this relation. We notice that flares produced by hotter stars have a flatter Fpeak∝EDF_{{\rm peak}} \propto {\rm ED} relation compared to that from cooler stars. This is related to the statistical discrepancy in light-curve shape of flare events with different colors. In spectra from LAMOST, we find that flare stars have apparently stronger H alpha emission than inactive stars, especially at the low temperature end, suggesting that chromospheric activity plays an important role in producing flares. On the other hand, the subclass having frequent flares are found to show H alpha emission of similar strength in their spectra to that recorded with only a single flare but similar effective temperature, implying that the chromospheric activity may not be the only trigger for eruptions.Comment: 17 pages, 15 figures, 2 tables, refereed version. For associated data files, see https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/523/219

    The structure and dynamics of nano particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    No full text
    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.MOE (Min. of Education, S’pore)Published versio

    Online Deformation Measurement of Laser Repair Substrate Based on Orthogonal Sampling Moiré

    No full text
    As an important branch of metal additive manufacturing, laser repair has broad application potential in the aerospace, automobile and ship building industries. In the process of laser repair, metal powder is introduced into the laser action area and heated to a molten state to form a molten pool, which moves on the component surface according to the preset scanning path. Additionally, the temperature of the repaired component changes dynamically with the movement of the molten pool, leading to the time-evolution of stress and deformation. Therefore, online deformation measurement for the repair process is essential for understanding the evolution mechanism of stress and deformation in laser repair. However, extreme environments such as ultra-high temperature, strong laser radiation and metal powder splashing exist during the laser repair, which bring great challenges for dynamic optical measurement. In this paper, an online deformation measurement system based on orthogonal sampling moiré for laser repair environment is developed, which is applied to measure the deformation field of the metal substrate during laser repair. In the measurement, laser repair is performed on a cantilever beam substrate and orthogonal grating is prepared on the side surface of the cantilever beam. The real-time grating images are recorded by an optical imaging system, in which a group of filter components are used to obtain optical images with high signal-to-noise ratio. Finally, the deformation field of the substrate during laser repair is calculated with the orthogonal sampling moiré method. The results show that the scanning path in the repair process has a significant influence on the distribution of residual deformation, which offers reference for optimizing parameters of laser repair

    A Binocular Vision-Based 3D Sampling Moiré Method for Complex Shape Measurement

    No full text
    As a promising method for moiré processing, sampling moiré has attracted significant interest for binocular vision-based 3D measurement, which is widely used in many fields of science and engineering. However, one key problem of its 3D shape measurement is that the visual angle difference between the left and right cameras causes inconsistency of the fringe image carrier fields, resulting in the phase mismatch of sampling moiré. In this paper, we developed a phase correction method to solve this problem. After epipolar rectification and carrier phase introduction and correction, the absolute phase of the fringe images was obtained. A more universal 3D sampling moiré measurement can be achieved based on the phase match and binocular vision model. Our numerical simulation and experiment showed the high robustness and anti-noise ability of this new 3D sampling moiré method for high-precision 3D shape measurement. As an application, cantilever beams are fabricated by directed energy deposition (DED) using different process parameters, and their 3D deformation caused by residual stresses is measured, showing great potential for residual stress analyses during additive manufacturing

    Nondestructive Surface Crack Detection of Laser-Repaired Components by Laser Scanning Thermography

    No full text
    As a revolutionary new technique, laser-engineered net shaping (LENS) is a layer additive manufacturing process that enables accurate, rapid and automatic repair of industrial component damage. In the laser repair (LR) process or in service, surface cracks can appear, which have a detrimental effect on the repair quality and the mechanical performance; therefore, the surface crack detection of repaired components has attracted much attention. Laser spot thermography is an important nondestructive testing method with the advantages of non-contact, full-field and high precision, which shows great potential in the crack detection of repaired components. The selection of thermographic process parameters and the optimization of thermal image processing algorithms are key to the success of the nondestructive detection. In this paper, the influence of material properties and thermographic process parameters on the surface temperature gradient is studied based on the simulation of laser spot thermal excitation, and the selection windows of thermographic process parameters for iron-based and nickel-based alloys are obtained, which is applied to the surface crack detection of repaired components. To improve the computational efficiency of thermal images, the Prewitt edge detection algorithm is used in the thermal image processing, which realized fast extraction of cracks with a high signal-to-noise ratio (SNR), and the detection sensitivity of crack width can reach 10 ÎŒm. To further study the influence of surface roughness on the thermographic detection, repair layers with and without polishing process are characterized, which show that the Prewitt edge detection algorithm is well applicable to crack detection on surfaces with different roughness level
    corecore