7,657 research outputs found
Possible Superconductivity at 37 K in Graphite-Sulfur Composite
Sulfur intercalated graphite composites with diamagnetic transitions at 6.7 K
and 37 K are prepared. The magnetization hysteresis loops (MHL), Xray
diffraction patterns, and resistance were measured. From the MHL, a slight
superconducting like penetration process is observed at 15 K in low field
region. The XRD shows no big difference from the mixture of graphite and sulfur
indicating that the volume of the superconducting phase (if any) is very small.
The temperature dependence of resistance shows a typical semiconducting
behavior with a saturation in low temperature region. This saturation is either
induced by the de-localization of conducting electrons or by possible
superconductivity in this system.Comment: CHIN. PHYS.LETT v18 1648 (2001
A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector.
It is known that plant viruses can change the performance of their vectors. However, there have been no reports on whether or how a semipersistent plant virus manipulates the feeding behaviors of its whitefly vectors. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is an emergent plant virus in many Asian countries and is transmitted specifically by B and Q biotypes of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. In the present study, we used electrical penetration graph (EPG) technique to investigate the effect of CCYV on the feeding behaviors of B. tabaci. The results showed that CCYV altered feeding behaviors of both biotypes and sexes of B. tabaci with different degrees. CCYV had stronger effects on feeding behaviors of Q biotype than those of B biotype, by increasing duration of phloem salivation and sap ingestion, and could differentially manipulate feeding behaviors of males and females in both biotype whiteflies, with more phloem ingestion in Q biotype males and more non-phloem probing in B biotype males than their respective females. With regard to feeding behaviors related to virus transmission, these results indicated that, when carrying CCYV, B. tabaci Q biotype plays more roles than B biotype, and males make greater contribution than females
Highly Doped Upconversion Nanoparticles for In Vivo Applications Under Mild Excitation Power.
One of the major challenges in using upconversion nanoparticles (UCNPs) is to improve their brightness. This is particularly true for in vivo studies, as the low power excitation is required to prevent the potential photo toxicity to live cells and tissues. Here, we report that the typical NaYF4:Yb0.2,Er0.02 nanoparticles can be highly doped, and the formula of NaYF4:Yb0.8,Er0.06 can gain orders of magnitude more brightness, which is applicable to a range of mild 980 nm excitation power densities, from 0.005 W/cm2 to 0.5 W/cm2. Our results reveal that the concentration of Yb3+ sensitizer ions plays an essential role, while increasing the doping concentration of Er3+ activator ions to 6 mol % only has incremental effect. We further demonstrated a type of bright UCNPs 12 nm in total diameter for in vivo tumor imaging at a power density as low as 0.0027 W/cm2, bringing down the excitation power requirement by 42 times. This work redefines the doping concentrations to fight for the issue of concentration quenching, so that ultrasmall and bright nanoparticles can be used to further improve the performance of upconversion nanotechnology in photodynamic therapy, light-triggered drug release, optogenetics, and night vision enhancement
Direct Determination of Electron-Phonon Coupling Matrix Element in a Correlated System
High-resolution electron energy loss spectroscopy measurements have been
carried out on an optimally doped cuprate Bi2Sr2CaCu2O8+{\delta}. The
momentum-dependent linewidth and the dispersion of an A1 optical phonon are
obtained. Based on these data as well as the detailed knowledge of the
electronic structure from angle-resolved photoemission spectroscopy, we develop
a scheme to determine the full structure of electron-phonon coupling for a
specific phonon mode, thus providing a general method for directly resolving
the EPC matrix element in systems with anisotropic electronic structures
Application of the Theory of Planned Behavior in Environmental Science: A Comprehensive Bibliometric Analysis.
Since the theory of planned behavior (TPB) was proposed by Ajzen in 1985, it has attracted extensive interest and been widely applied worldwide. Although an increasing number of studies have employed the TPB in the domain of environmental science, there have been no attempts to retrospectively analyze existing articles. The current study aimed to holistically understand the application status of the TPB in environmental science from a knowledge domain visualization perspective. A total of 531 journal articles were obtained through the Scopus database to perform a bibliometric analysis and content analysis. The results showed that waste management, green consumption, climate and environment, saving and conservation, and sustainable transportation are the primary research topics; the United States (U.S.), Mainland China, the United Kingdom (UK), and Malaysia are the most productive countries/regions. Moreover, the cross-disciplinary situations, main source journals, and key articles were revealed. Furthermore, the extended factors, integrated theories, major methods, specific groups, and control variables of environmental science research using the TPB were elaborated and integrated into a comprehensive application framework. Constructive criticisms were ultimately discussed. The findings contribute in several ways to help relevant researchers learn about the application of TPB to environmental science and provide new insights and holistic references for further research on environment-related behavior
Effect of gauge boson mass on the phase structure of QED
Dynamical chiral symmetry breaking (DCSB) in QED with finite gauge
boson mass is
studied in the framework of the rainbow approximation of Dyson-Schwinger
equations.
By adopting a simple gauge boson propagator ansatz at finite temperature, we
first numerically solve the
Dyson-Schwinger equation for the fermion self-energy to
determine the chiral phase diagram of QED with finite gauge boson mass
at finite chemical potential and finite temperature, then we study the
effect of the finite gauge mass on the phase diagram of QED. It is found
that the gauge boson mass suppresses the occurrence of
DCSB. The area of the region in the chiral phase diagram corresponding to
DCSB phase decreases as
the gauge boson mass increases. In
particular, chiral symmetry gets restored when is above a
certain critical value. In this paper, we use DCSB to describe the
antiferromagnetic order and use the gauge boson mass to describe the
superconducting order. Our results give qualitatively a physical
picture on the competition and coexistence between antiferromagnetic
order and superconducting orders in high temperature cuprate superconductors.Comment: 10 pages, 2 figure
TLR2 and Caspase-1 Signaling are Critical for Bacterial Containment But Not Clearance During Craniotomy-Associated Biofilm Infection
BACKGROUND: A craniotomy is required to access the brain for tumor resection or epilepsy treatment, and despite precautionary measures, infectious complications occur at a frequency of 1-3%. Approximately half of craniotomy infections are caused by Staphylococcus aureus (S. aureus) that forms a biofilm on the bone flap, which is recalcitrant to antibiotics. Our prior work in a mouse model of S. aureus craniotomy infection revealed a critical role for myeloid differentiation factor 88 (MyD88) in bacterial containment and pro-inflammatory mediator production. Since numerous receptors utilize MyD88 as a signaling adaptor, the current study examined the importance of Toll-like receptor 2 (TLR2) and TLR9 based on their ability sense S. aureus ligands, namely lipoproteins and CpG DNA motifs, respectively. We also examined the role of caspase-1 based on its known association with TLR signaling to promote IL-1β release.
METHODS: A mouse model of craniotomy-associated biofilm infection was used to investigate the role of TLR2, TLR9, and caspase-1 in disease progression. Wild type (WT), TLR2 knockout (KO), TLR9 KO, and caspase-1 KO mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the galea, brain, and bone flap. In addition, the role of TLR2-dependent signaling during microglial/macrophage crosstalk with myeloid-derived suppressor cells (MDSCs) was examined.
RESULTS: TLR2, but not TLR9, was important for preventing S. aureus outgrowth during craniotomy infection, as revealed by the elevated bacterial burden in the brain, galea, and bone flap of TLR2 KO mice concomitant with global reductions in pro-inflammatory mediator production compared to WT animals. Co-culture of MDSCs with microglia or macrophages, to model interactions in the brain vs. galea, respectively, also revealed a critical role for TLR2 in triggering pro-inflammatory mediator production. Similar to TLR2, caspase-1 KO animals also displayed increased S. aureus titers coincident with reduced pro-inflammatory mediator release, suggestive of pathway cooperativity. Treatment of caspase-1 KO mice with IL-1β microparticles significantly reduced S. aureus burden in the brain and galea compared to empty microparticles, confirming the critical role of IL-1β in limiting S. aureus outgrowth during craniotomy infection.
CONCLUSIONS: These results demonstrate the existence of an initial anti-bacterial response that depends on both TLR2 and caspase-1 in controlling S. aureus growth; however, neither pathway is effective at clearing infection in the WT setting, since craniotomy infection persists when both molecules are present
A novel mechanism of charge density wave in a transition metal dichalcogenide
Charge density wave, or CDW, is usually associated with Fermi surfaces
nesting. We here report a new CDW mechanism discovered in a 2H-structured
transition metal dichalcogenide, where the two essential ingredients of CDW are
realized in very anomalous ways due to the strong-coupling nature of the
electronic structure. Namely, the CDW gap is only partially open, and charge
density wavevector match is fulfilled through participation of states of the
large Fermi patch, while the straight FS sections have secondary or negligible
contributions.Comment: 5 pages and 4 figure
Mott Transition in An Anyon Gas
We introduce and analyze a lattice model of anyons in a periodic potential
and an external magnetic field which exhibits a transition from a Mott
insulator to a quantum Hall fluid. The transition is characterized by the anyon
statistics, , which can vary between Fermions, , and Bosons,
. For bosons the transition is in the universality class of the
classical three-dimensional XY model. Near the Fermion limit, the transition is
described by a massless Dirac theory coupled to a Chern-Simons gauge
field. Analytic calculations perturbative in , and also a large
N-expansion, show that due to gauge fluctuations, the critical properties of
the transition are dependent on the anyon statistics. Comparison with previous
calcualations at and near the Boson limit, strongly suggest that our lattice
model exhibits a fixed line of critical points, with universal critical
properties which vary continuosly and monotonically as one passes from Fermions
to Bosons. Possible relevance to experiments on the transitions between
plateaus in the fractional quantum Hall effect and the magnetic field-tuned
superconductor-insulator transition are briefly discussed.Comment: text and figures in Latex, 41 pages, UBCTP-92-28, CTP\#215
First data and preliminary experimental results from a new Doppler Backscattering system on the MAST-U spherical tokamak
A new Doppler backscattering (DBS) system, consisting of Q-band and V-band,
has been installed and achieved its first data on the MAST-U spherical tokamak.
The Q-band and V-band have separate microwave source systems, but share the
same optical front-end components. The Q-band and V-band sources simultaneously
generate eight (34, 36, 38, 40, 42, 44, 46 and 48 GHz) and seven (52.5, 55,
57.5, 60, 62.5, 65 and 67.5 GHz) fixed frequency probe beams, respectively.
These frequencies provide a large range of radial positions from the
low-field-side edge plasma to the core, and possibly to the high-field-side
edge, depending on the plasma conditions. The quasi-optical system consists of
a remotely-tunable polarizer, a focusing lens and a remotely-steerable mirror.
By steering the mirror, the system provides remote control of the probed
density fluctuation wavenumber, and allow the launch angle to match the
magnetic field. The range of accessible turbulence wavenumbers (k_\theta) is
reasonably large with normalized wavenumber k_\theta\rho_s ranging from <0.5 to
9. The first data acquired by this DBS system is validated by comparing with
the data from the other DBS system on MAST-U (introduced in Ref. [21]). An
example of measuring the velocity profile spanning from the edge to the center
in a high-density plasma is presented, indicating the robust capabilities of
the integrated Q-band and V-band DBS systems
- …