8 research outputs found

    A Differential Game Modeling Approach to Dynamic Traffic Assignment and Signal Control

    Get PDF
    This paper addresses a theoretical issue related to combined dynamic traffic assignment and signal control under conditions of congestion through a brief review of previous research and the discussion on interaction between dynamic traffic assignment and signal control. The dynamic characteristics of the interaction are approached using a differential game modeling approach here to formulate the decision-making process for solving the problem inherent in this combination. Specifically, the combined dynamic traffic assignment and signal control problem is formulated as a leader−follower differential game, where a leader and multiple followers engage interactively to finding optimal strategies under the assumption of an openloop information structure. Discretization in time is used to find a numerical solution for the proposed game model, and a simulated annealing algorithm is applied to obtain optimal strategies. Finally, a simulation study is conducted on a simple traffic network in which numerical results demonstrate the effectiveness of the proposed approach

    A Differential Game Modeling Approach to Dynamic Traffic Assignment and Signal Control

    No full text
    This paper addresses a theoretical issue related to combined dynamic traffic assignment and signal control under conditions of congestion through a brief review of previou

    ultramicroscopy Water distributions of hydrated biological specimens by valence electron energy loss spectroscopy

    No full text
    A technique has been developed for measuring the water distribution in thin frozen hydrated biological specimens by means of electron energy loss spectroscopy (EELS). The method depends on the quantification of subtle changes in the valence electron excitation spectrum as a function of composition. It involves determining the single-scattering intensities, calculating oscillator strengths and applying a multiple-least-squares fitting procedure to reference spectra for water and the organic constituents. The direct EELS approach has an important advantage over other indirect methods that are based on X-ray generation or elastic scattering measurements since these are applied to freeze-dried specimens where differential shrinkage between compartments may produce errors. Precision and accuracy of the EELS method have been tested on cryosectioned solutions of bovine serum albumin; data have also been obtained from cryosections of rapidly frozen erythrocytes. Results suggest that a precision of better than +5% (s.d.) is attainable from a single measurement and the accuracy may be as high as +2% if repeated measurements are made. The lateral spatial resolution of the water determinations is limited by radiation damage to approximately 100 nm which is of the same order as the specimen thickness

    A Protective Role of Phenylalanine Ammonia-Lyase from <i>Astragalus membranaceus</i> against Saline-Alkali Stress

    No full text
    Phenylalanine ammonia-lyase (PAL, E.C.4.3.1.5) catalyzes the benzene propane metabolism and is the most extensively studied enzyme of the phenylpropanoid pathway. However, the role of PAL genes in Astragalus membranaceus, a non-model plant showing high capability toward abiotic stress, is less studied. Here, we cloned AmPAL and found that it encodes a protein that resides in the cytoplasmic membrane. The mRNA of AmPAL was strongly induced by NaCl or NaHCO3 treatment, especially in the root. Overexpressing AmPAL in Nicotiana tabacum resulted in higher PAL enzyme activities, lower levels of malondialdehyde (MDA), and better root elongation in the seedlings under stress treatment compared to the control plants. The protective role of AmPAL under saline-alkali stress was also observed in 30-day soil-grown plants, which showed higher levels of superoxide dismutase (SOD), proline, and chlorophyll compared to wild-type N. Tabacum. Collectively, we provide evidence that AmPAL is responsive to multiple abiotic stresses and that manipulating the expression of AmPAL can be used to increase the tolerance to adverse environmental factors in plants
    corecore