116 research outputs found

    Gene Expression Profiling of Skeletal Muscle of Nursing Piglets

    Get PDF
    To gain insight into the regulation mechanism associated with the rapid gain in skeletal muscle during neonatal period, gene expression profiles of skeletal muscle of nursing pigs was investigated using Affymetrix Porcine GeneChip. A total of 1094 transcripts were detected as differential expression over time course tested (p<0.01, q<0.05). With combinative use of partitioning around medoid and hierarchical clustering, three clusters of transcripts with distinct temporal expression were defined. Gene functional categories and pathways, particularly involved in cell signaling, cell cycle, cell adhesion, ECM-receptor interaction, glycolysis, protein synthesis and degradation, and intracellular transport, were identified. Moreover, we showed 49 of the differentially expressed genes within published QTL regions or with marked deletion effects. Our study demonstrates previously uncharacterized changes in transcription accompanying early postnatal growth of skeletal muscle of pigs. It has highlighted potential cascades and important candidates for further investigation on controlling of postnatal muscle growth

    KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway.

    Get PDF
    Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma

    Comparative transcriptome analysis reveals gene network regulation of TGase-induced thermotolerance in tomato

    Get PDF
    Transglutaminase (TGase), the ubiquitous protein in plants, catalyzes the post-translational transformation of proteins and plays a vital role in photosynthesis. However, its role and mechanism in tomato subjected to heat stress still remain unknown. Here, we carried out a transcriptomic assay to compare the differentially expressed genes (DEGs) between wild type (WT) and TGase overexpression (TGaseOE) plants employed to high-temperature at 42 °C and samples were collected after 0, 6, and 12 h, respectively. A total of 11,516 DEGs were identified from heat-stressed seedlings, while 1,148 and 1,353 DEGs were up-and down-regulated, respectively. The DEGs upon high-temperature stress were closely associated with the pathways encompassing protein processing in the endoplasmic reticulum, carbon fixation, and photosynthetic metabolism. In addition, 425 putative transcription factors (TFs) were identified, and the majority of them associated with the bHLH, HSF, AP2/ERF, MYB, and WRKY families. RNA-seq data validation further confirmed that 8 genes were linked to protein processing and photosynthesis, and the mRNA level of these genes in TGaseOE was higher than that in WT plants, which is consistent in transcriptome results. In conclusion, these results reveal the transcriptional regulation between WT and TGaseOE in tomato under heat stress and shed light on a new dimension of knowledge of TGase-mediated thermotolerance mechanism at the molecular level

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Elevated levels of interleukin‐33 are associated with asthma: A meta‐analysis

    No full text
    Abstract Background Previous studies reported that patients with asthma showed higher levels of interleukin (IL)‐33 in peripheral blood, compared to healthy control (HCs). However, we also noticed that there were no significant differences of IL‐33 levels between controls and asthma patients in a recent study. We aim to conduct this meta‐analysis and evaluate the feasibility of IL‐33 in peripheral blood that may act as a promising biomarker in asthma. Methods Articles published before December 2022 were searched in these databases (PubMed, Web of Science, EMBASE, and Google Scholar). We used STATA 12.0 software to compute the results. Results The study showed that asthmatics showed higher IL‐33 level in serum and plasma, compared to HCs (serum: standard mean difference [SMD] 2.06, 95% confidence interval [CI] 1.12−3.00, I2 = 98.4%, p < .001; plasma: SMD 3.67, 95% CI 2.32−5.03, I2 = 86.0%, p < .001). Subgroup analysis indicated that asthma adults showed higher IL‐33 level in serum, compared to HCs, whereas no significant difference in IL‐33 level in serum was showed between asthma children and HCs (adults: SMD 2.17, 95% CI 1.09−3.25; children: SMD 1.81, 95% CI −0.11 to 3.74). The study indicated that moderate and severe asthmatics showed higher IL‐33 level in serum, compared to mild asthmatics (SMD 0.78, 95% CI 0.41−1.16, I2 = 66.2%, p = .011). Conclusions In conclusion, the main findings of present meta‐analysis suggested that there was a significant correlation between IL‐33 levels and the severity of asthma. Therefore, IL‐33 levels of either serum or plasma may be regarded as a useful biomarker of asthma or the degree of disease

    Formation of Nanostructures in Ti₂AlC Induced by High-Temperature Helium Irradiation

    No full text
    The effects of helium (He) irradiation on Ti2AlC at different temperatures were studied in this work. He irradiation at room temperature (RT) induced severe lattice distortion and caused serious cracks in the samples. During He irradiation, Ti-Al bonds were easily broken and He atoms tended to accumulate at basal planes forming microcracks after irradiations at RT and 430 °C. Stacking faults and nanotwins were formed after He irradiation at all temperatures. Three kinds of nanostructures were formed after He irradiation: 1) face-centered cubic (fcc) nanotwins generated by outward diffusion of Al, accumulation of C interstitials and detwinning of Ti2C slabs; 2) fcc nanograins induced by the formation of fcc structure and its subsequent amorphization by irradiation; 3) Ti2AlC nanotwins induced by recrystallization from fcc nanotwins at 750 °C. All the results indicate that Ti2AlC is highly resistant to He radiation and has excellent damage recovery at high temperatures

    Identification of Crucial Genetic Factors, Such as PPARÎł, that Regulate the Pathogenesis of Fatty Liver Disease in Dairy Cows Is Imperative for the Sustainable Development of Dairy Industry

    No full text
    Frequently occurring fatty liver disease in dairy cows during the perinatal period, a typical type of non-alcoholic fatty liver disease (NAFLD), results in worldwide high culling rates of dairy cows (averagely about 25%) after calving. This has been developing into a critical industrial problem throughout the world, because the metabolic disease severely affects the welfare and economic value of dairy cows. Findings about the molecular mechanisms how the fatty liver disease develops would help scientists to discover novel therapeutic targets for NAFLD. Studies have shown that PPAR&gamma; participates or regulates the fat deposition in liver by affecting the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress and inflammation, which all contribute to fatty liver. This review mainly focuses on crucial regulatory mechanisms of PPAR&gamma; regulating lipid deposition in the liver via direct and/or indirect pathways, suggesting that PPAR&gamma; might be a potential critical therapeutic target for fatty liver disease, however, it would be of our significant interest to reveal the pathology and pathogenesis of NAFLD by using dairy cows with fatty liver as an animal model. This review will provide a molecular mechanism basis for understanding the pathogenesis of NAFLD
    • 

    corecore