30,223 research outputs found

    Transmission eigenvalues and the bare conductance in the crossover to Anderson localization

    Full text link
    We measure the field transmission matrix t for microwave radiation propagating through random waveguides in the crossover to Anderson localization. From these measurements, we determine the dimensionless conductance, g, and the individual eigenvalues τn\tau_n of the transmission matrix tttt^\dagger whose sum equals g. In diffusive samples, the highest eigenvalue, τ1\tau_1, is close to unity corresponding to a transmission of nearly 100%, while for localized waves, the average of τ1\tau_1, is nearly equal to g. We find that the spacing between average values of lnτn\ln\tau_n is constant and demonstrate that when surface interactions are taken into account it is equal to the inverse of the bare conductance.Comment: 5 pages, 5 figure

    High-frequency Light Reflector via Low-frequency Light Control

    Get PDF
    We show that the momentum of light can be reversed via the atomic coherence created by another light with one or two orders of magnitude lower frequency. Both the backward retrieval of single photons from a timed Dicke state and the reflection of continuous waves by high-order photonic band gaps are analysed. The required control field strength scales linearly with the nonlinearity order, which is explained by the dynamics of superradiance lattices. Experiments are proposed with 85^{85}Rb atoms and Be2+^{2+} ions. This holds promise for light-controllable X-ray reflectors.Comment: 5 pages, 5 figure

    Superradiance Lattice

    Get PDF
    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on electromagnetically induced transparency (EIT). For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective uniform force in momentum space. The quantum lattice dynamics, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The two-dimensional SL provides a flexible platform for Dirac physics in graphene. The SL can be extended to three and higher dimensions where no analogous real space lattices exist with new physics waiting to be explored.Comment: 6pages, 4 figure
    corecore