20,933 research outputs found
Dynamic Characteristic Analysis of Doubly-fed Induction Generator Low Voltage Ride-through
AbstractFor studying the impacts of wind turbines integrated into grid, the relation between the protection of doubly-fed induction generator (DFIG) during low voltage fault and the dynamic characteristic of grid is established from the points of generator operation constrains and district grid voltage stability. Then the resistance value and switching strategy of crowbar are discussed. Based on analyzing the electric characteristic of the voltage or current during the short-circuit fault in wind turbines with crowbar switching, the equation to estimate peak current of stator and rotor of DFIG with crowbar switching and the value range of crowbar resistance are derived. The numeric test analyzes the impacts of crowbar switching on district grid voltage stability with different fault types, crowbar switching time and crowbar resistance values. Also the interaction impact of crowbar switching on multi-wind farms is analyzed. The results show that reasonable crowbar resistance value and switching strategy can improve low voltage ride through (LVRT) ability of wind turbines and reduce bad impacts on district grid voltage stability with large-scale crowbar switching of wind farms
Multi-functional model predictive control with mutual influence elimination for three-phase AC/DC converters in energy conversion
© 2019 by the authors. Conventional model predictive control (MPC)-based direct power control of the three-phase full-bridge AC/DC converter usually suffers from the parametric coupling between active and reactive powers. A reference change of either the active or reactive power will influence the other, deteriorating the dynamic-state performance. In addition, the steady-state performance affected by one-step-delay arising from computation and communication processes in the digital implementation should be improved in consideration of switching frequency reduction. In combination with the proposed novel mutual influence elimination constraint, this paper proposes the multi-functional MPC for three-phase full-bridge AC/DC converters to improve both the steady and dynamic performances simultaneously. It has various advantages such as one-step-delay compensation, power ripple reduction, and switching frequency reduction for steady-state performance as well as mutual influence elimination for dynamic capability. The simulation and experimental results are obtained to verify the effectiveness of the proposed method
Advanced multi-functional model predictive control for three-phase AC/DC converters
© 2016 The Institute of Electrical Engineers of Japan. With the conventional model predictive control (MPC) based direct power control of three-phase AC/DC converters, the active and reactive powers can be simultaneously controlled by a single cost function. A change in parameters of either the active or reactive power within the cost function will affect the other, leading to poor dynamic performance of transient response. Besides, the steady state performance of the conventional MPC is affected by one-step-delay of digital implementation. This paper proposes an advanced multi-functional MPC of three-phase full-bridge AC/DC converter for high power applications. It has multiple functions such as one-step-delay compensation, power ripple reduction, switching frequency reduction, and dynamic mutual influence elimination. Using the proposed modified cost function, both the steady state and dynamic performances of the converter can be improved. Finally, the simulation results are reported to validate the advancement of the proposed control strategy in comparison with other control methods
Relationship between speech production and perception in people who stutter
Speech production difficulties are apparent in people who stutter (PWS). PWS also have difficulties in speech perception compared to controls. It is unclear whether the speech perception difficulties in PWS are independent of, or related to, their speech production difficulties. To investigate this issue, functional MRI data were collected on 13 PWS and 13 controls whilst the participants performed a speech production task and a speech perception task. PWS performed poorer than controls in the perception task and the poorer performance was associated with a functional activity difference in the left anterior insula (part of the speech motor area) compared to controls. PWS also showed a functional activity difference in this and the surrounding area [left inferior frontal cortex (IFC)/anterior insula] in the production task compared to controls. Conjunction analysis showed that the functional activity differences between PWS and controls in the left IFC/anterior insula coincided across the perception and production tasks. Furthermore, Granger Causality Analysis on the resting-state fMRI data of the participants showed that the causal connection from the left IFC/anterior insula to an area in the left primary auditory cortex (Heschl’s gyrus) differed significantly between PWS and controls. The strength of this connection correlated significantly with performance in the perception task. These results suggest that speech perception difficulties in PWS are associated with anomalous functional activity in the speech motor area, and the altered functional connectivity from this area to the auditory area plays a role in the speech perception difficulties of PWS
A novel mechanism of charge density wave in a transition metal dichalcogenide
Charge density wave, or CDW, is usually associated with Fermi surfaces
nesting. We here report a new CDW mechanism discovered in a 2H-structured
transition metal dichalcogenide, where the two essential ingredients of CDW are
realized in very anomalous ways due to the strong-coupling nature of the
electronic structure. Namely, the CDW gap is only partially open, and charge
density wavevector match is fulfilled through participation of states of the
large Fermi patch, while the straight FS sections have secondary or negligible
contributions.Comment: 5 pages and 4 figure
Recommended from our members
Synergy of flocculation and flotation for microalgae harvesting using aluminium electrolysis
Microalgae are often used as feedstock for renewable biofuel production and as pollutant up-takers for wastewater treatment; however, biomass harvesting still remains a challenge in field applications. In this study, electro-flocculation using aluminium electrolysis was tested as a method to collect Chlorella vulgaris. The electrolysis products were positively charged over a wide pH range below 9.5, which gave them a flocculation potential for negatively charged microalgae. As flocculants were in-situ generated and gradually released, microalgae flocs formed in a snowballing mode, resulting in the compaction of large flocs. When higher current density was applied, microalgae could be harvested more rapidly, although there was a trade-off between a higher energy use and more residual aluminium in the culture medium. Benefits of this flocculation method are two-fold: the phosphate decrease in post-harvesting could improve nutrient removal in microalgae based wastewater treatment, while the ammonium increase may favor microalgae recovery for medium recycling
Tunable Surface Conductivity in Bi2Se3 Revealed in Diffusive Electron Transport
We demonstrate that the weak antilocalization effect can serve as a
convenient method for detecting decoupled surface transport in topological
insulator thin films. In the regime where a bulk Fermi surface coexists with
the surface states, the low field magnetoconductivity is described well by the
Hikami-Larkin-Nagaoka equation for single component transport of
non-interacting electrons. When the electron density is lowered, the
magnetotransport behavior deviates from the single component description and
strong evidence is found for independent conducting channels at the bottom and
top surfaces. The magnetic-field-dependent part of corrections to conductivity
due to the Zeeman energy is shown to be negligible despite non-negligible
electron-electron interactions.Comment: 5 pages, 3 figures. For comments and questions, please contact:
[email protected]
Theoretical models for predicting ventilation performance of vertical solar chimneys in tunnels
Solar chimney as a reliable renewable energy system has been primarily utilized for building ventilation, but its application in the tunnel is rarely explored. This study develops theoretical models to predict the ventilation performance of vertical solar chimney in urban tunnel. Five temperature distribution types within the chimney cavity are analyzed, including uniform, vertically linear, horizontally semi-parabolic, two piecewise semi-parabolic in the depth direction, and three-dimensional parabolic profiles. The theoretical models consider the effect of chimney configuration, tunnel geometry, glazing materials, and solar radiation intensity on airflow rate through solar chimney. Validation against experimental data and numerical simulation shows that considering three-dimensional temperature distributions results in an average 11 % deviation from validation data, outperforming assumptions of uniform (29.3 % deviation) or lower-dimensional profiles. The volumetric flow rate through solar chimney exponentially decreased with h/w and h/d that the optimum ratio of h/d is 10. The airflow rate linearly increased with 0.14 power of glazing absorptivity. This analysis provides technical guidance for optimizing solar chimney design in tunnels, enhancing natural ventilation, and reducing energy consumption for mechanical ventilation systems
- …