691 research outputs found

    The Impact of Background Music Teaching on the Accuracy and Fluency of College Student Oral English in China

    Get PDF
    This paper studies the impact of background music teaching on the accuracy and fluency of oral English of university students. It is found that: 1). Overall, background music teaching can effectively facilitate the accuracy of oral English of the students. Specifically, compared with conventional teaching methods, background music teaching can better help the students reduce syntactic and morphological errors in their oral output, but does not show any advantage in reducing the students’ lexical errors. 2). Compared with conventional teaching methods, background music teaching can better promote the fluency of oral English of the students. 3). Although background music helps to lower the affective filter, it may not be able to help the students to get more comprehensible input. On the contrary, background music plays a more facilitating role in students’ oral output

    ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling

    Get PDF
    Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage-sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form

    An entropic feature selection method in perspective of Turing formula

    Full text link
    Health data are generally complex in type and small in sample size. Such domain-specific challenges make it difficult to capture information reliably and contribute further to the issue of generalization. To assist the analytics of healthcare datasets, we develop a feature selection method based on the concept of Coverage Adjusted Standardized Mutual Information (CASMI). The main advantages of the proposed method are: 1) it selects features more efficiently with the help of an improved entropy estimator, particularly when the sample size is small, and 2) it automatically learns the number of features to be selected based on the information from sample data. Additionally, the proposed method handles feature redundancy from the perspective of joint-distribution. The proposed method focuses on non-ordinal data, while it works with numerical data with an appropriate binning method. A simulation study comparing the proposed method to six widely cited feature selection methods shows that the proposed method performs better when measured by the Information Recovery Ratio, particularly when the sample size is small

    Regional differences and sources of organochlorine pesticides in soils surrounding chemical industrial parks

    Get PDF
    Concentrations of organochlorine pesticides (OCPs; dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB)) were investigated in 105 soil samples collected in vicinity of the chemical industrial parks in Tianjin, China. OCP concentrations significantly varied in the study area, high HCH and DDT levels were found close to the chemical industrial parks. The intensity of agricultural activity and distance from the potential OCP emitters have important influences on the OCP residue distributions. Principal component analysis indicates that HCH pollution is a mix of historical technical HCH and current lindane pollution and DDT pollution input is only due to technical DDT sources. The significant correlations of OCP compounds reveal that HCHs, DDTs and HCB could have some similar sources of origin

    Identification of sources of elevated concentrations of polycyclic aromatic hydrocarbons in an industrial area in Tianjin, China

    Get PDF
    The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector in 105 topsoil samples from an industrial area around Bohai Bay, Tianjin in the North of China. Results demonstrated that concentrations of PAHs in 104 soil samples from this area ranged from 68.7 to 5,590 ng g (-aEuro parts per thousand 1) dry weight with a mean of a16PAHs 814 +/- 813 ng g (-aEuro parts per thousand 1), which suggests that there exists mid to high levels of PAH contamination. The concentration of a16PAHs in one soil sample from Tianjin Port was exceptionally high (48,700 ng g (-aEuro parts per thousand 1)). Ninety-three of the 105 soil samples were considered to be contaminated with PAHs (> 200 ng g (-aEuro parts per thousand 1)), and 25 were heavily polluted (> 1,000 ng g (-aEuro parts per thousand 1)). The sites with high PAHs concentration are mainly distributed around chemical industry parks and near highways. Two low molecular weight PAHs, naphthalene and phenanthrene, were the dominant components in the soil samples, which accounted for 22.1% and 10.7% of the a16PAHs concentration, respectively. According to the observed molecular indices, house heating in winter, straw stalk combustion in open areas after harvest, and petroleum input were common sources of PAHs in this area, while factory discharge and vehicle exhaust were the major sources around chemical industrial parks and near highways. Biological processes were probably another main source of low molecular weight PAHs

    Effects of Multiple Metal Binding Sites on Calcium and Magnesium-dependent Activation of BK Channels

    Get PDF
    BK channels are activated by physiological concentrations of intracellular Ca2+ and Mg2+ in a variety of cells. Previous studies have identified two sites important for high-affinity Ca2+ sensing between [Ca2+]i of 0.1–100 μM and a site important for Mg2+ sensing between [Mg2+]i of 0.1–10 mM. BK channels can be also activated by Ca2+ and Mg2+ at concentrations >10 mM so that the steady-state conductance and voltage (G-V) relation continuously shifts to more negative voltage ranges when [Mg2+]i increases from 0.1–100 mM. We demonstrate that a novel site is responsible for metal sensing at concentrations ≥10 mM, and all four sites affect channel activation independently. As a result, the contributions of these sites to channel activation are complex, depending on the combination of Ca2+ and Mg2+ concentrations. Here we examined the effects of each of these sites on Ca2+ and Mg2+-dependent activation and the data are consistent with the suggestion that these sites are responsible for metal binding. We provide an allosteric model for quantitative estimation of the contributions that each of these putative binding sites makes to channel activation at any [Ca2+]i and [Mg2+]i

    The NH2 Terminus of RCK1 Domain Regulates Ca2+-dependent BKCa Channel Gating

    Get PDF
    Large conductance, voltage- and Ca2+-activated K+ (BKCa) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four α subunits of BKCa may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BKCa gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BKCa activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BKCa channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition
    corecore