3 research outputs found

    Lightweight Neural Network with Knowledge Distillation for CSI Feedback

    Full text link
    Deep learning (DL) has shown promise in enhancing channel state information (CSI) feedback. However, many studies indicate that better feedback performance often accompanies higher computational complexity. Pursuing better performance-complexity tradeoffs is crucial to facilitate practical deployment, especially on computation-limited devices, which may have to use lightweight autoencoder with unfavorable performance. To achieve this goal, this paper introduces knowledge distillation (KD) to achieve better tradeoffs, where knowledge from a complicated teacher autoencoder is transferred to a lightweight student autoencoder for performance improvement. Specifically, two methods are proposed for implementation. Firstly, an autoencoder KD-based method is introduced by training a student autoencoder to mimic the reconstructed CSI of a pretrained teacher autoencoder. Secondly, an encoder KD-based method is proposed to reduce training overhead by performing KD only on the student encoder. Additionally, a variant of encoder KD is introduced to protect user equipment and base station vendor intellectual property. Numerical simulations demonstrate that the proposed KD methods can significantly improve the student autoencoder's performance, while reducing the number of floating point operations and inference time to 3.05%-5.28% and 13.80%-14.76% of the teacher network, respectively. Furthermore, the variant encoder KD method effectively enhances the student autoencoder's generalization capability across different scenarios, environments, and bandwidths.Comment: 28 pages, 4 figure

    SPOC learner's final grade prediction based on a novel sampling batch normalization embedded neural network method

    Get PDF
    Recent years have witnessed the rapid growth of Small Private Online Courses (SPOC) which is able to highly customized and personalized to adapt variable educational requests, in which machine learning techniques are explored to summarize and predict the learner's performance, mostly focus on the final grade. However, the problem is that the final grade of learners on SPOC is generally seriously imbalance which handicaps the training of prediction model. To solve this problem, a sampling batch normalization embedded deep neural network (SBNEDNN) method is developed in this paper. First, a combined indicator is defined to measure the distribution of the data, then a rule is established to guide the sampling process. Second, the batch normalization (BN) modified layers are embedded into full connected neural network to solve the data imbalanced problem. Experimental results with other three deep learning methods demonstrates the superiority of the proposed method.Comment: 11 pages, 5 figures, ICAIS 202
    corecore