604 research outputs found

    Inter-tier Interference Suppression in Heterogeneous Cloud Radio Access Networks

    Full text link
    Incorporating cloud computing into heterogeneous networks, the heterogeneous cloud radio access network (H-CRAN) has been proposed as a promising paradigm to enhance both spectral and energy efficiencies. Developing interference suppression strategies is critical for suppressing the inter-tier interference between remote radio heads (RRHs) and a macro base station (MBS) in H-CRANs. In this paper, inter-tier interference suppression techniques are considered in the contexts of collaborative processing and cooperative radio resource allocation (CRRA). In particular, interference collaboration (IC) and beamforming (BF) are proposed to suppress the inter-tier interference, and their corresponding performance is evaluated. Closed-form expressions for the overall outage probabilities, system capacities, and average bit error rates under these two schemes are derived. Furthermore, IC and BF based CRRA optimization models are presented to maximize the RRH-accessed users' sum rates via power allocation, which is solved with convex optimization. Simulation results demonstrate that the derived expressions for these performance metrics for IC and BF are accurate; and the relative performance between IC and BF schemes depends on system parameters, such as the number of antennas at the MBS, the number of RRHs, and the target signal-to-interference-plus-noise ratio threshold. Furthermore, it is seen that the sum rates of IC and BF schemes increase almost linearly with the transmit power threshold under the proposed CRRA optimization solution

    A Penalized Multi-trait Mixed Model for Association Mapping in Pedigree-based GWAS

    Full text link
    In genome-wide association studies (GWAS), penalization is an important approach for identifying genetic markers associated with trait while mixed model is successful in accounting for a complicated dependence structure among samples. Therefore, penalized linear mixed model is a tool that combines the advantages of penalization approach and linear mixed model. In this study, a GWAS with multiple highly correlated traits is analyzed. For GWAS with multiple quantitative traits that are highly correlated, the analysis using traits marginally inevitably lose some essential information among multiple traits. We propose a penalized-MTMM, a penalized multivariate linear mixed model that allows both the within-trait and between-trait variance components simultaneously for multiple traits. The proposed penalized-MTMM estimates variance components using an AI-REML method and conducts variable selection and point estimation simultaneously using group MCP and sparse group MCP. Best linear unbiased predictor (BLUP) is used to find predictive values and the Pearson's correlations between predictive values and their corresponding observations are used to evaluate prediction performance. Both prediction and selection performance of the proposed approach and its comparison with the uni-trait penalized-LMM are evaluated through simulation studies. We apply the proposed approach to a GWAS data from Genetic Analysis Workshop (GAW) 18

    Towards Efficient Fine-tuning of Pre-trained Code Models: An Experimental Study and Beyond

    Full text link
    Recently, fine-tuning pre-trained code models such as CodeBERT on downstream tasks has achieved great success in many software testing and analysis tasks. While effective and prevalent, fine-tuning the pre-trained parameters incurs a large computational cost. In this paper, we conduct an extensive experimental study to explore what happens to layer-wise pre-trained representations and their encoded code knowledge during fine-tuning. We then propose efficient alternatives to fine-tune the large pre-trained code model based on the above findings. Our experimental study shows that (1) lexical, syntactic and structural properties of source code are encoded in the lower, intermediate, and higher layers, respectively, while the semantic property spans across the entire model. (2) The process of fine-tuning preserves most of the code properties. Specifically, the basic code properties captured by lower and intermediate layers are still preserved during fine-tuning. Furthermore, we find that only the representations of the top two layers change most during fine-tuning for various downstream tasks. (3) Based on the above findings, we propose Telly to efficiently fine-tune pre-trained code models via layer freezing. The extensive experimental results on five various downstream tasks demonstrate that training parameters and the corresponding time cost are greatly reduced, while performances are similar or better. Replication package including source code, datasets, and online Appendix is available at: \url{https://github.com/DeepSoftwareAnalytics/Telly}.Comment: Accepted by ISSTA 2023 (The 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis

    SHA-SCP: A UI Element Spatial Hierarchy Aware Smartphone User Click Behavior Prediction Method

    Full text link
    Predicting user click behavior and making relevant recommendations based on the user's historical click behavior are critical to simplifying operations and improving user experience. Modeling UI elements is essential to user click behavior prediction, while the complexity and variety of the UI make it difficult to adequately capture the information of different scales. In addition, the lack of relevant datasets also presents difficulties for such studies. In response to these challenges, we construct a fine-grained smartphone usage behavior dataset containing 3,664,325 clicks of 100 users and propose a UI element spatial hierarchy aware smartphone user click behavior prediction method (SHA-SCP). SHA-SCP builds element groups by clustering the elements according to their spatial positions and uses attention mechanisms to perceive the UI at the element level and the element group level to fully capture the information of different scales. Experiments are conducted on the fine-grained smartphone usage behavior dataset, and the results show that our method outperforms the best baseline by an average of 10.52%, 11.34%, and 10.42% in Top-1 Accuracy, Top-3 Accuracy, and Top-5 Accuracy, respectively
    corecore