675 research outputs found

    Study on the Construction Path of Master Studios for Vocational Employment and Entrepreneurship Guidance

    Get PDF
    In the process of cultivating highly skilled technical talents in higher vocational colleges, employment and entrepreneurship guidance plays a crucial role. However, there are still problems such as insufficient resources and unsatisfactory guidance effects in the current vocational colleges’ employment and entrepreneurship guidance. To solve these problems, this study proposes the construction of master studios for employment and entrepreneurship guidance and discusses their construction paths in detail. Through literature analysis, questionnaires, and interviews, this paper analyzes the current status and existing problems of employment and entrepreneurship guidance in vocational colleges, explores the concept, role, and necessity, and feasibility of master studios. The research results show that master studios can significantly improve students’ employment and entrepreneurship abilities and promote the teaching quality of vocational colleges. Based on this, this paper proposes a systematic construction path for master studios, including goal setting, organizational structure design, operation mode, resource allocation and guarantee, and the cultivation and development of the master team. Finally, by analyzing successful cases, the experience and insights of master studio construction are summarized to provide theoretical basis and practical guidance for the construction of master studios for employment and entrepreneurship guidance in vocational colleges

    Inter-tier Interference Suppression in Heterogeneous Cloud Radio Access Networks

    Full text link
    Incorporating cloud computing into heterogeneous networks, the heterogeneous cloud radio access network (H-CRAN) has been proposed as a promising paradigm to enhance both spectral and energy efficiencies. Developing interference suppression strategies is critical for suppressing the inter-tier interference between remote radio heads (RRHs) and a macro base station (MBS) in H-CRANs. In this paper, inter-tier interference suppression techniques are considered in the contexts of collaborative processing and cooperative radio resource allocation (CRRA). In particular, interference collaboration (IC) and beamforming (BF) are proposed to suppress the inter-tier interference, and their corresponding performance is evaluated. Closed-form expressions for the overall outage probabilities, system capacities, and average bit error rates under these two schemes are derived. Furthermore, IC and BF based CRRA optimization models are presented to maximize the RRH-accessed users' sum rates via power allocation, which is solved with convex optimization. Simulation results demonstrate that the derived expressions for these performance metrics for IC and BF are accurate; and the relative performance between IC and BF schemes depends on system parameters, such as the number of antennas at the MBS, the number of RRHs, and the target signal-to-interference-plus-noise ratio threshold. Furthermore, it is seen that the sum rates of IC and BF schemes increase almost linearly with the transmit power threshold under the proposed CRRA optimization solution

    A Penalized Multi-trait Mixed Model for Association Mapping in Pedigree-based GWAS

    Full text link
    In genome-wide association studies (GWAS), penalization is an important approach for identifying genetic markers associated with trait while mixed model is successful in accounting for a complicated dependence structure among samples. Therefore, penalized linear mixed model is a tool that combines the advantages of penalization approach and linear mixed model. In this study, a GWAS with multiple highly correlated traits is analyzed. For GWAS with multiple quantitative traits that are highly correlated, the analysis using traits marginally inevitably lose some essential information among multiple traits. We propose a penalized-MTMM, a penalized multivariate linear mixed model that allows both the within-trait and between-trait variance components simultaneously for multiple traits. The proposed penalized-MTMM estimates variance components using an AI-REML method and conducts variable selection and point estimation simultaneously using group MCP and sparse group MCP. Best linear unbiased predictor (BLUP) is used to find predictive values and the Pearson's correlations between predictive values and their corresponding observations are used to evaluate prediction performance. Both prediction and selection performance of the proposed approach and its comparison with the uni-trait penalized-LMM are evaluated through simulation studies. We apply the proposed approach to a GWAS data from Genetic Analysis Workshop (GAW) 18

    DSGNN: A Dual-View Supergrid-Aware Graph Neural Network for Regional Air Quality Estimation

    Full text link
    Air quality estimation can provide air quality for target regions without air quality stations, which is useful for the public. Existing air quality estimation methods divide the study area into disjointed grid regions, and apply 2D convolution to model the spatial dependencies of adjacent grid regions based on the first law of geography, failing to model the spatial dependencies of distant grid regions. To this end, we propose a Dual-view Supergrid-aware Graph Neural Network (DSGNN) for regional air quality estimation, which can model the spatial dependencies of distant grid regions from dual views (i.e., satellite-derived aerosol optical depth (AOD) and meteorology). Specifically, images are utilized to represent the regional data (i.e., AOD data and meteorology data). The dual-view supergrid learning module is introduced to generate supergrids in a parameterized way. Based on the dual-view supergrids, the dual-view implicit correlation encoding module is introduced to learn the correlations between pairwise supergrids. In addition, the dual-view message passing network is introduced to implement the information interaction on the supergrid graphs and images. Extensive experiments on two real-world datasets demonstrate that DSGNN achieves the state-of-the-art performances on the air quality estimation task, outperforming the best baseline by an average of 19.64% in MAE.Comment: Submitted to TKDE, 12 pages and 8 figure

    Towards Efficient Fine-tuning of Pre-trained Code Models: An Experimental Study and Beyond

    Full text link
    Recently, fine-tuning pre-trained code models such as CodeBERT on downstream tasks has achieved great success in many software testing and analysis tasks. While effective and prevalent, fine-tuning the pre-trained parameters incurs a large computational cost. In this paper, we conduct an extensive experimental study to explore what happens to layer-wise pre-trained representations and their encoded code knowledge during fine-tuning. We then propose efficient alternatives to fine-tune the large pre-trained code model based on the above findings. Our experimental study shows that (1) lexical, syntactic and structural properties of source code are encoded in the lower, intermediate, and higher layers, respectively, while the semantic property spans across the entire model. (2) The process of fine-tuning preserves most of the code properties. Specifically, the basic code properties captured by lower and intermediate layers are still preserved during fine-tuning. Furthermore, we find that only the representations of the top two layers change most during fine-tuning for various downstream tasks. (3) Based on the above findings, we propose Telly to efficiently fine-tune pre-trained code models via layer freezing. The extensive experimental results on five various downstream tasks demonstrate that training parameters and the corresponding time cost are greatly reduced, while performances are similar or better. Replication package including source code, datasets, and online Appendix is available at: \url{https://github.com/DeepSoftwareAnalytics/Telly}.Comment: Accepted by ISSTA 2023 (The 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis
    • …
    corecore