439 research outputs found

    Data-Flow-Based Normalization Generation Algorithm of R1CS for Zero-Knowledge Proof

    Full text link
    The communities of blockchains and distributed ledgers have been stirred up by the introduction of zero-knowledge proofs (ZKPs). Originally designed to solve privacy issues, ZKPs have now evolved into an effective remedy for scalability concerns and are applied in Zcash (internet money like Bitcoin). To enable ZKPs, Rank-1 Constraint Systems (R1CS) offer a verifier for bi-linear equations. To accurately and efficiently represent R1CS, several language tools like Circom, Noir, and Snarky have been proposed to automate the compilation of advanced programs into R1CS. However, due to the flexible nature of R1CS representation, there can be significant differences in the compiled R1CS forms generated from circuit language programs with the same underlying semantics. To address this issue, this paper uses a data-flow-based R1CS paradigm algorithm, which produces a standardized format for different R1CS instances with identical semantics. By using the normalized R1CS format circuits, the complexity of circuits' verification can be reduced. In addition, this paper presents an R1CS normalization algorithm benchmark, and our experimental evaluation demonstrates the effectiveness and correctness of our methods.Comment: 10pages, 8 figures, a shorter version is accepted by PRDC 202

    Study of the cytological features of bone marrow mesenchymal stem cells from patients with neuromyelitis optica.

    Get PDF
    Neuromyelitis optica (NMO) is a refractory autoimmune inflammatory disease of the central nervous system without an effective cure. Autologous bone marrow‑derived mesenchymal stem cells (BM‑MSCs) are considered to be promising therapeutic agents for this disease due to their potential regenerative, immune regulatory and neurotrophic effects. However, little is known about the cytological features of BM‑MSCs from patients with NMO, which may influence any therapeutic effects. The present study aimed to compare the proliferation, differentiation and senescence of BM‑MSCs from patients with NMO with that of age‑ and sex‑matched healthy subjects. It was revealed that there were no significant differences in terms of cell morphology or differentiation capacities in the BM‑MSCs from the patients with NMO. However, in comparison with healthy controls, BM‑MSCs derived from the Patients with NMO exhibited a decreased proliferation rate, in addition to a decreased expression of several cell cycle‑promoting and proliferation‑associated genes. Furthermore, the cell death rate increased in BM‑MSCs from patients under normal culture conditions and an assessment of the gene expression profile further confirmed that the BM‑MSCs from patients with NMO were more vulnerable to senescence. Platelet‑derived growth factor (PDGF), as a major mitotic stimulatory factor for MSCs and a potent therapeutic cytokine in demyelinating disease, was able to overcome the decreased proliferation rate and increased senescence defects in BM‑MSCs from the patients with NMO. Taken together, the results from the present study have enabled the proposition of the possibility of combining the application of autologous BM‑MSCs and PDGF for refractory and severe patients with NMO in order to elicit improved therapeutic effects, or, at the least, to include PDGF as a necessary and standard growth factor in the current in vitro formula for the culture of NMO patient‑derived BM‑MSCs

    Bipolar resistance switching characteristics with opposite polarity of Au/SrTiO3/Ti memory cells

    Get PDF
    Two types of bipolar resistance switching with eightwise and counter eightwise polarities are observed to coexist in Au/SrTiO3/Ti memory cells. These two types of switching can be induced by different defect distributions which are activated by controlling the electric process. The analyses of I-V and C-V data reveal that the resistance switching with eightwise polarity originates from the change of Schottky barrier at the Au/SrTiO3 interface caused by trapping/detrapping effects at interface defect states, while the switching with counter eightwise polarity is caused by oxygen-vacancy migration

    Characteristics of Pollen from Transgenic Lines of Apple Carrying the Exogenous CpTI Gene

    Get PDF
    AbstractIt is fundamental for gene transformation and ecosystem hazard evaluation to study the pollen characteristics of transgenic plants. In this research, the characteristics of pollen from 7- or 8-year-old transgenic apple plants carrying an exogenous CpTI gene were analyzed. The results showed that there was no significant difference in terms of size, morphology, or exine ornamentation between the pollen of the transgenic plants and the non-transgenic control. However, the transgenic plants had more abnormal pollen grains. Of the 13 transgenic lines tested, 12 had a significantly lower amount of pollen and six exhibited a significantly lower germination rate when cultured in vitro. The pollen viability of three transgenic lines was determined, with two showing significantly lower viability than the control. The transgenic Gala apple pollen grains germinated normally via controlled pollination on Fuji apple stigmas. However, the pollen tubes extended relatively slowly during the middle and late development stages, and another 8h were needed to reach the ovules compared with the control. The gibberellic acid concentration in transgenic Gala apple flowers was lower than in the non-transgenic control during all development stages tested. The abscisic acid concentration in the transgenic flowers was lower during the pink stage, and higher during the ball and fully open stages. Microscopic observation of the anther structure showed no difference. The tapetum of the pollen sac wall in transgenic plants decomposed late and affected pollen grain development, which could be one of the reasons for the lower number of pollen grains and poor viability in the transgenic plants

    Remote sensing traffic scene retrieval based on learning control algorithm for robot multimodal sensing information fusion and human-machine interaction and collaboration

    Get PDF
    In light of advancing socio-economic development and urban infrastructure, urban traffic congestion and accidents have become pressing issues. High-resolution remote sensing images are crucial for supporting urban geographic information systems (GIS), road planning, and vehicle navigation. Additionally, the emergence of robotics presents new possibilities for traffic management and road safety. This study introduces an innovative approach that combines attention mechanisms and robotic multimodal information fusion for retrieving traffic scenes from remote sensing images. Attention mechanisms focus on specific road and traffic features, reducing computation and enhancing detail capture. Graph neural algorithms improve scene retrieval accuracy. To achieve efficient traffic scene retrieval, a robot equipped with advanced sensing technology autonomously navigates urban environments, capturing high-accuracy, wide-coverage images. This facilitates comprehensive traffic databases and real-time traffic information retrieval for precise traffic management. Extensive experiments on large-scale remote sensing datasets demonstrate the feasibility and effectiveness of this approach. The integration of attention mechanisms, graph neural algorithms, and robotic multimodal information fusion enhances traffic scene retrieval, promising improved information extraction accuracy for more effective traffic management, road safety, and intelligent transportation systems. In conclusion, this interdisciplinary approach, combining attention mechanisms, graph neural algorithms, and robotic technology, represents significant progress in traffic scene retrieval from remote sensing images, with potential applications in traffic management, road safety, and urban planning

    Fast multiple gene fragment ligation method based on Type IIs restriction enzyme DraIII

    Get PDF
    With the established BioBrick Assembly standards, ligation of different parts has to be accomplished step by step. It can be time-consuming when dealing with multiple fragment ligation. BBF RFC 61 is developed aimed at completing the ligation of multiple fragments quickly and efficiently based on Type II restriction enzyme DraIII
    • …
    corecore