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Remote sensing tra�c scene
retrieval based on learning
control algorithm for robot
multimodal sensing information
fusion and human-machine
interaction and collaboration

Huiling Peng*, Nianfeng Shi and Guoqiang Wang

School of Computer and Information Engineering, Luoyang Institute of Science and Technology,
Luoyang, China

In light of advancing socio-economic development and urban infrastructure,
urban tra�c congestion and accidents have become pressing issues.
High-resolution remote sensing images are crucial for supporting urban
geographic information systems (GIS), road planning, and vehicle navigation.
Additionally, the emergence of robotics presents new possibilities for tra�c
management and road safety. This study introduces an innovative approach
that combines attention mechanisms and robotic multimodal information
fusion for retrieving tra�c scenes from remote sensing images. Attention
mechanisms focus on specific road and tra�c features, reducing computation
and enhancing detail capture. Graph neural algorithms improve scene retrieval
accuracy. To achieve e�cient tra�c scene retrieval, a robot equipped with
advanced sensing technology autonomously navigates urban environments,
capturing high-accuracy, wide-coverage images. This facilitates comprehensive
tra�c databases and real-time tra�c information retrieval for precise tra�c
management. Extensive experiments on large-scale remote sensing datasets
demonstrate the feasibility and e�ectiveness of this approach. The integration
of attention mechanisms, graph neural algorithms, and robotic multimodal
information fusion enhances tra�c scene retrieval, promising improved
information extraction accuracy for more e�ective tra�c management, road
safety, and intelligent transportation systems. In conclusion, this interdisciplinary
approach, combining attentionmechanisms, graph neural algorithms, and robotic
technology, represents significant progress in tra�c scene retrieval from remote
sensing images, with potential applications in tra�c management, road safety,
and urban planning.

KEYWORDS
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1. Introduction

The global trend of urbanization stands as one of the prominent features of
contemporary world development. Over time, an increasing number of people are flocking
to urban areas in search of improved living conditions and broader opportunities. However,
this trend exhibits marked differences across regions. In some areas, such as Europe and
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North America, urbanization has been a historical process
spanning several centuries, resulting in relatively mature urban
planning and infrastructure development (Chaudhuri et al.,
2012). But, simultaneously, in some regions, especially in Asia
and Africa, where development started later, the urbanization
process is characterized by rapid growth, giving rise to a
host of new challenges. This swift urbanization often leads to
organizational issues stemming from inadequate urban planning,
thereby impacting residents’ quality of life and the sustainability of
urban development. China, especially in a global context, serves as
a noteworthy case study. As one of the most populous countries
globally, China has undergone an unprecedented pace and scale of
urbanization, profoundly influencing global urbanization trends.
In this global context, the fusion of multi-modal information
has become increasingly crucial for decision-making (Plummer
et al., 2017). The integration of rapidly advancing remote sensing
satellite technology with deep learning techniques has paved the
way for significant advancements in various fields, including
urban planning, disaster warning, and autonomous driving. The
utilization of remote sensing data, acquired through spatial and
spectral information obtained from digital image processing and
analysis, has become an invaluable source for generating high-
resolution satellite images (Liang et al., 2017). These images play
a crucial role in tasks such as target extraction, map updates,
and geographical information system (GIS) information extraction
(Chaudhuri et al., 2012). However, extracting accurate road
information from these high-resolution images has proven to be
a challenging task using traditional methods that rely on grayscale
feature analysis of image elements such as edge tracking or least
squares B-spline curves. These methods suffer from issues related
to accuracy, practicality, and generalizability. Therefore, this study
aims to explore how to fully leverage remote sensing satellite
technology and deep learning methods to address new challenges
brought about by urbanization, especially in rapidly urbanizing
regions like China.

To overcome these limitations, the integration of computer
vision and deep learning (Wang et al., 2022; Wu et al.,
2022, 2023; Zhang M. et al., 2022; Zhang Y.-H. et al., 2022;
Chen et al., 2023) has become essential. Understanding the
semantics of images has become increasingly important, and
visual relationship detection has emerged as a key technique
to improve computer understanding of images at a deeper
level, providing high-level semantic information. In the early
stages of visual relational research, common relationships between
object pairs, such as position and size comparisons, were
explored to improve object detection performance (Gaggioli et al.,
2016). However, recent advancements have expanded the scope
to include spatial object-object interactions, prepositional and
comparative adjective relations, and human object interactions
(HOIS) (Gaggioli et al., 2016), thereby enhancing the capabilities
of vision tasks. Large-scale visual relationship detection has been
achieved by decomposing the prediction of relationships into two
parts: detecting objects and predicting predicates (Ben-Younes
et al., 2019). Fusing various visual features, such as appearance, size,
bounding boxes, and linguistic cues, has been employed to build
base phrases, contributing to better phrase localization (Plummer
et al., 2017). Furthermore, reinforcement learning frameworks and

end-to-end systems have been proposed to enhance relationship
detection through better object detection (Liang et al., 2017; Rabbi
et al., 2020).

A combination of rich linguistic and visual representations has
also been implemented using end-to-end deep neural networks,
with the incorporation of external linguistic knowledge during
training, leading to improved prediction and generalization
(Kimura et al., 2007). Deep learning, proposed by Chander et al.
(2009), has been a game-changer in many fields, surpassing
traditional machine learning methods by automatically learning
from large datasets and uncovering implicit properties in the
data. Since its success in the ImageNET competition in 2012,
deep learning has become widely adopted in computer vision,
speech recognition, natural language processing, medical image
processing, and remote sensing, producing state-of-the-art results.
As a result, the integration of deep learning models in remote
sensing has significantly improved various remote sensing-
related tasks, driving advancements in the field as a whole.
The combination of rapidly advancing remote sensing satellite
technology with deep learning techniques has enabled more
accurate and effective decision-making through multi-modal
information fusion. This fusion has opened up new possibilities
for a wide range of applications, from urban planning and disaster
warning to unmanned driving and GIS updates, propelling the
field of remote sensing and its integration with computer vision
to new heights. However, compared to computer vision images,
remote sensing images present more challenges due to their larger
coverage area, wider variety of objects, and complex backgrounds.
As a result, when extracting information from remote sensing
images, it becomes essential to employ deep learning models
with visual attention mechanisms to effectively identify relevant
features amidst the complexity, leading to improved accuracy
in information extraction. The visual attention mechanism is a
concept inspired by the human brain’s ability to filter out relevant
information (Tang, 2022; Zheng et al., 2022) from vast visual input.
By applying a global quick scan followed by a focus on specific
regions, the visual attention mechanism helps humans efficiently
process external visual information. Integrating this mechanism
into deep learning models simulates the human visual system’s way
of handling external information, making it a significant aspect
to study for enhancing automatic information extraction from
ultra-high resolution remote sensing images.

A more comprehensive elaboration of the research problem
is indeed essential. The current introduction briefly mentions
the challenges associated with traditional methods. Expanding
on why these existing methods are inadequate, elucidating their
limitations, and outlining why the integration of computer vision
and deep learning is imperative will establish a robust foundation
for this study (Liu et al., 2017). Traditional methods often rely
on manual data collection and feature engineering, which can
be labor-intensive, time-consuming, and susceptible to human
error. These approaches may struggle to cope with the ever-
increasing volumes of complex visual data generated in various
fields. Moreover, traditional methods may not adapt well to
dynamic environments or effectively handle subtle nuances and
variations in data. In contrast, computer vision and deep learning
techniques have demonstrated their ability to automatically extract
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meaningful features from raw data, recognize patterns, and adapt
to changing scenarios. Their potential to revolutionize tasks such
as image classification, object detection, and video analysis has
made them indispensable in modern research and applications.
By delving into the limitations of conventional methods and
highlighting the advantages of integrating computer vision and
deep learning, we establish a compelling rationale for the necessity
of our study. In summary, this study aims to accurately extract
road information from high-resolution remote sensing images
by combining attention mechanism fusion and Graph Neural
Networks. The proposed approach shows significant promise
in enhancing information extraction (Gao et al., 2016; Liu
et al., 2017) and ultimately contributing to more effective traffic
management, safer roads, and intelligent transportation systems.
The interdisciplinary nature of this research, linking remote
sensing, robotics, and transportation, opens up new research
possibilities and applications in traffic management, road safety,
and urban planning (Figure 1 illustrates the overall structure of
the research). The first part mainly introduces the development
status of road information extraction based on remote sensing
images, and describes the specific applications of road extraction
methods at home and abroad, and lists the research objectives
and significance of this paper, and explains the overall structure
of this paper; the second part mainly introduces the related
work, analyzes some of the most commonly used single pose
estimation algorithms nowadays; the third part introduces the
related algorithms used in this paper and the specific The fourth
part describes the experimental process, which is based on the
sample identification of the self-built dataset and the application of
the Graph Neural Networks model algorithm with improved loss
function, and verifies the validity and applicability of the model on
the validation set, and compares some of the current mainstream
algorithms. At the end of the paper, we discuss some advantages
and disadvantages of the model, summarize the whole paper, and
give an outlook on future work.

2. Related work

In the context of robotic multimodal information fusion
decision-making (Luo et al., 2015), we can leverage advanced
sensing technologies on robots to address the challenges in road
extraction from remote sensing images (Mohd et al., 2022).
Robots equipped with various sensors can efficiently acquire data
and analyze images, enhancing the accuracy and speed of road
network extraction compared to manual visual interpretation
methods. To achieve automatic or semi-automatic extraction
of road networks, we can integrate the dynamic programming
algorithm into the robot’s decision-making process (Kubelka et al.,
2015). The dynamic programming algorithm, originally designed
for low-resolution remote sensing images, has been improved for
high-resolution images (Martins et al., 2015).

By incorporating this algorithm into the robot’s capabilities,
we can develop an efficient method for road feature extraction
(Lin et al., 2020). The robot can use the dynamic programming
algorithm to derive a parametric model of roads (Shi et al.,
2023), treating it as a “cost” function and applying dynamic

programming to determine the optimal path between seed points.
This approach allows the robot to iteratively optimize the “cost”
function, incorporating constraints specific to road features, such as
edge characteristics, to enhance accuracy (Li et al., 2020). Moreover,
the attention mechanism fusion can be applied to the robot’s image
analysis process. By integrating the attention mechanism into the
extraction process, the robot can focus on specific road and traffic
features, effectively reducing computation time while capturing
relevant details for more accurate extraction results. Additionally,
the use of graph neural algorithms can further enhance the robot’s
ability to detect and recognize road and traffic elements in the
remote sensing images. These algorithms can process complex
spatial relationships, improving the accuracy of scene retrieval.

With the robotic multimodal information fusion technique,
the robot can autonomously navigate through urban environments
and cover a wide area, capturing remote sensing images with
high precision (Duan et al., 2022). This data acquisition capability
will contribute to creating comprehensive traffic databases
and supporting real-time traffic information retrieval for more
accurate traffic management and planning. In conclusion, by
combining the dynamic programming algorithm with attention
mechanism fusion and graph neural algorithms, integrated into
robotic multimodal information (Tang et al., 2021; He et al.,
2023) fusion decision-making, we can significantly improve
the efficiency and accuracy of road extraction from remotely
sensed images. This interdisciplinary approach bridges remote
sensing, robotics, and transportation, opening up new research
opportunities and applications in traffic management, road safety,
and urban planning.

In the context of our proposed approach for traffic scene
retrieval from remotely sensed images, we can leverage the
advantages of the Snake model and visual attention mechanism
to enhance the effectiveness of feature extraction and improve the
accuracy of information retrieval.

Firstly, the Snake model, with its feature extraction capabilities
and energy minimization process, can be employed to accurately
extract road contours and traffic elements from high-resolution
remote sensing images. However, to overcome its sensitivity to
initial position and convergence issues, we can integrate the Snake
model with the attention mechanism fusion. By simulating the
visual attention mechanism, we can quickly identify areas of
interest in the input image, helping to place the Snake model
near the relevant image features of roads and traffic elements,
thus improving its efficiency and precision in extracting the target
regions (Valgaerts et al., 2012). Moreover, the visual attention
mechanism can play a crucial role in the process of compressing
remote sensing image information. By analyzing human eye
sensitivity to information, we can use different compression
strategies based on the visual attention mechanism to compress
remote sensing images effectively. This approach not only reduces
the computational complexity but also improves the quality of the
compressed images (Ghaffarian et al., 2021).

Additionally, for target detection in remote sensing images,
we can utilize the visual attention computational model to
calculate saliency maps of the images. By identifying regions
of interest using these saliency maps, we can achieve accurate
target recognition and classification, which is beneficial for

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1267231
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Peng et al. 10.3389/fnbot.2023.1267231

FIGURE 1

Schematic diagram of the overall structure of this paper, pre-processing of high-resolution remote sensing images, followed by extraction of road
information from the images and model validation by combining Graph Neural Networks and dual attention mechanisms.

traffic scene retrieval and understanding (Dong et al., 2021).
Furthermore, semantic segmentation of remote sensing images
can be improved by leveraging the visual attention mechanism.
The attentional approach can assist in determining the exact
boundaries of the targets to be extracted, leading to higher
accuracy in information extraction from the remote sensing
images (Buttar and Sachan, 2022). Overall, the combination
of the Snake model and visual attention mechanism in the
context of our proposed approach can significantly enhance
traffic scene retrieval from remotely sensed images. By
effectively capturing relevant details, reducing computational
burden, and improving the accuracy of feature extraction, this
interdisciplinary approach holds promise for revolutionizing
traffic management, road safety, and urban planning through
intelligent transportation systems. The integration of robotic
multimodal information fusion decision-making will further
extend the capabilities of this approach by enabling advanced
sensing technologies and autonomous navigation for data
acquisition and analysis in urban environments (Valgaerts et al.,
2012; Dong et al., 2021; Ghaffarian et al., 2021; Buttar and Sachan,
2022).

In our research, we acknowledge the effectiveness of deep
learning in high-resolution remote sensing image information
extraction. Deep convolutional neural network models have
shown promising results in extracting valuable information
from very high-resolution (VHR) images. The use of Fully
Convolutional Networks (FCNs) for semantic segmentation has
become the mainstream approach in this domain. Various studies
(Maggiori et al., 2017; Audebert et al., 2018; Bittner et al.,
2018; Kampffmeyer et al., 2018; Li et al., 2018, 2023; Shahzad
et al., 2018; Papadomanolaki et al., 2019; Razi et al., 2022) have
demonstrated the benefits of employing deep learning methods
to improve accuracy and feature representation in remote sensing
image analysis.

Despite the progress made, the existing pixel-based methods
can only reflect spectral information at an individual pixel level
and lack a comprehensive understanding of the overall remote
sensing image, leading to difficulties in obtaining meaningful

object information and sensitivity to noise. Object-oriented and
visual attention-based methods have shown potential but are
limited by manual feature extraction and model robustness issues.
Here, we propose a novel approach that incorporates attention
mechanism fusion and robotic multimodal information fusion
decision-making in the framework of graph neural algorithms to
address these challenges (Chaib et al., 2022; Chen et al., 2022; Tian
et al., 2023).

Our approach utilizes attention mechanisms to enhance the
focus on specific road and traffic features in the remotely
sensed images. By doing so, we effectively reduce parameter
computation and improve the ability to capture relevant details.
We further employ graph neural algorithms to enhance the
accuracy of scene retrieval, enabling more precise detection and
recognition of road and traffic elements. The integration of robotic
multimodal information fusion brings a new dimension to the
process. Robots equipped with advanced sensing technologies can
autonomously navigate urban environments and capture high-
accuracy, wide-coverage remotely sensed images. By leveraging this
multimodal information, we create comprehensive traffic databases
that facilitate real-time traffic information retrieval, contributing to
more accurate traffic management and planning.

Through extensive experiments on large-scale remote sensing
datasets, we demonstrate the feasibility and effectiveness of our
proposed approach. The combination of attentional mechanism
fusion, graph neural algorithms, and robotic multimodal
information fusion enhances the retrieval of traffic scenes from
remotely sensed images, resulting in improved accuracy and
efficiency of information extraction (Wang et al., 2020; Tian
and Ramdas, 2021). Ultimately, this leads to more effective
traffic management, safer roads, and intelligent transportation
systems (Chen et al., 2019; Cui et al., 2019; Li and Zhu, 2021).
In conclusion, our interdisciplinary approach, which combines
attentional mechanism fusion and robotic multimodal information
fusion decision-making within the context of graph neural
algorithms, presents significant advancements in retrieving
traffic scenes from remotely sensed images. This integration of
remote sensing, robotics, and transportation research opens up
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new possibilities for traffic management, road safety, and urban
planning applications.

3. Method

3.1. Road feature extraction

The spatial features of roads in remote sensing images are
mainly manifested as one or more narrow and long curves,
while the differences between road information and other objects
are mainly reflected in texture and spatial features. Based on
such differences between different objects, the typical features of
roads can be effectively extracted and input into Alex network
for model training, and the typical features of roads in sample
data can be derived. In this paper, three methods are mainly
used to extract road features in remote sensing images, including
rectangular matching degree, linear feature index and second-order
rectangular features.

3.1.1. Rectangular matching degree
Since the road is a two-way lane in the actual environment, the

interval between the two curves is stable and constant under normal
circumstances, they are parallel to each other with a short interval,
which is expressed as two parallel lines in the remote sensing image.
The parameter MR in the rectangular matching degree in the road
extraction is used as the feature parameter of the road object, this
is for this feature of the road in the remote sensing image, MR is
expressed as:

MR =
Xin

Xoj
(1)

Where:Xin indicates the area of the fitted rectangle of the image
object; the larger the parameterMR the more likely it is to be a road,
and vice versa, the less likely it is to be a road; Xoj indicates the area
of the acquired segmented image object.

3.1.2. RecLinear characteristic index
It is difficult to express road features directly by spectral features

in high resolution remote sensing images, traverse and calculate the
minimum outer rectangle of all segmented image objects, and the
rectangle satisfies:

LW = Np (2)

The linear characteristic index is obtained by calculating the
centerline of all connected areas:

LW = NpILF =
L

W
=

L
Np

L

=
L2

Np
(3)

Where, NP denotes the area of the connected area; ILF denotes
the linear feature index; L and W denote the length and width of
the image object; the larger the linear feature index, the more likely
it is to be a road, and vice versa, the less likely it is to be a road.

3.1.3. Second-order rectangular-like features
In high-resolution remote sensing images, for regular

roads, using rectangular matching degree to express the feature
parameters with linear feature indicators will work well, but like
some complex roads similar to loops, it is more difficult to use
rectangular matching degree to express the feature parameters with
linear feature indicators. To address this problem, a new linear
feature, i.e., the second-order rectangular feature, is invoked in this
paper to describe complex shapes:

CM =

∑n
i=1 Fi

n
(4)

Fi =

√

(xi − xm)
2
+ (yi − ym)

2 (5)

As shown in Equations (4) and (5) above, where Fi denotes the
Euclidean distance between the ith image element and the center
of mass inside the object; CM denotes the second-order moment
characteristic parameter of the object; n denotes the number of
image objects; i denotes the ith segmented object; Xi, Yi denote the
arbitrary image element of the ith object; Xm, ym, denote the center
of mass position of the ith object in the row and column directions.

3.2. Graph Neural Networks

Graph Neural Networks (GNNs) are a type of deep learning
model used for processing graph-structured data, and have
achieved significant breakthroughs in fields such as image
processing, social network analysis, and chemical molecule design.
GNNs learn to represent the entire graph by iteratively propagating
and aggregating information on the nodes and edges of the
graph, enabling efficient processing of graph-structured data. The
algorithmic principle of GNNs is as follows.The core idea of GNNs
is to update the node representations through iterative information
propagation and aggregation in the graph, starting from an initial
feature representation for each node x(0)i at time step t = 0, in an
undirected graph G = (V ,E) where V represents the set of nodes
and E represents the set of edges. The update rule for each layer can
be formalized as the following equation:

x
(t+1)
i = f

(

x
(t)
i , x(t)j j∈N(i)

,w(t)
)

(6)

where x
(t)
i represents the feature representation of node vi at

time step t, N(i) represents the set of neighboring nodes of node
vi, w(t) represents the parameter set at time step t, and f (·)
represents the update function for node features. This update
function usually consists of two parts: information aggregation and
activation function. Information aggregation updates the feature
representation of the current node by aggregating the features of its
neighboring nodes, which can be achieved through simple weighted
averaging or more complex attention mechanisms. The activation
function introduces non-linearity to increase the expressiveness of
the model. After multiple layers of information propagation and
aggregation, the final node feature representation x

(T)
i can be used

for various tasks, such as node classification, graph classification,
etc. For node classification tasks, the node features can be input
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FIGURE 2

Graph Neural Network structure schematic. A Graph Neural Network consists of an input layer, an output layer and multiple hidden layers. %: (A)
Description of what is contained in the first panel. (B) Description of what is contained in the second panel.

into a fully connected layer followed by a softmax function for
classification. For graph classification tasks, the features of all
nodes are aggregated and input into a fully connected layer for
classification, The structure of the Graph Neural Network is shown
in Figure 2.

During the training process of GNNs, supervised learning
methods are commonly used, optimizing the model parameters
by minimizing the loss function between the predicted results
and the true labels. The specific form of the loss function can
vary depending on the task type and dataset, such as cross-
entropy loss for node classification tasks, average pooling loss for
graph classification tasks, etc. The algorithmic pseudo-code for the
graphical convolutional neural network is shown in Algorithm 1.

In summary, GNNs learn to represent the entire graph by
propagating and aggregating information on the nodes and edges
of the graph, enabling efficient processing of graph-structured data.

3.3. Attention mechanism

Convolutional neural networks mimic the mechanism of
biological visual perception, solving the tedious engineering of
traditional manual feature extraction and realizing automatic
feature extraction from data. However, the excellent performance
of convolutional neural network is based on a large number of
training samples, and the performance of convolutional neural
network decreases dramatically under small samples because the
training data is small and the sample features cannot be extracted
comprehensively and effectively, so the attention mechanism is
introduced into the convolutional neural network.

Visual attention mechanism as an important feature of
human visual system. Combining attention mechanism with deep
learning models, attention mechanism can help deep learning

Require: Graph G(V;E), node features {xv ,∀v ∈

1: V}, number of layers K, trainable parameters 2

for neural networks.

2:

Ensure: Node embeddings hv for all v ∈ V.

3:

4: Initialize node embeddings: h
(0)
v ← xv ,∀v ∈ V.

5:

6: for k = 1 to K do

7:

8: Compute the neighborhood aggregation: h
(k)
v ←

AGGREGATE(k) (h(k−1)u : u ∈ N (v)}).

9:

10: Update node embeddings: h
(k)
v ← COMBINE(k)(h(k−1)v , h(k)v ).

11:

12: Attend to neighbors: h
(k)
v ← ATTEND(k)({h(k)u : u

13: ∈ N (v)}, h(k)v ;2, a).

14:

15: end for

16: Set final node embeddings: hv ← h
(K)
v ,∀v ∈ V.

17:

Algorithm 1. Graph Convolutional Neural Network (GCN).

models to better understand external information. In deep
learning attention mechanism is an effective tool to extract
the most useful information from the input signal. Attention
mechanisms usually use higher-level semantic information to
reweight lower-level information to suppress background and
noise. The attention mechanism is implemented by using filtering
functions (e.g., softmax and sigmoid) and sequential techniques.
Attention mechanisms combined with deep learning models have
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FIGURE 3

Heat map of attention mechanism.

been applied to target detection, natural language processing,
image classification, semantic segmentation, etc. with some
success. Figure 3 displays a more complex attention mechanism,
represented by a two-dimensional matrix that depicts the attention
weights between Query and Key pairs. Each element in the matrix
represents the attention weight between a Query and Key pair. The
darker colors indicate higher attention weights, while lighter colors
indicate lower attention weights.

The attention mechanism mimics the human visual attention
pattern, focusing on only the most relevant originating information
to the current task at a time, making the information request
more efficient. The combination of attention mechanism and
convolutional neural network can make the network model pay
more attention to important features, increase the weight of
important features, and suppress unnecessary features to further
improve the feature extraction ability of convolutional neural
network for important information. In this paper, a dual attention
mechanism combining channel attention mechanism and spatial
attention mechanism is introduced to combine Graph Neural
Networks with a custom sample data set for more accurate
detection and recognition of roads and transportation tools.

3.3.1. Channel attention mechanism
The channel attention mechanism is based on a basic

understanding of convolutional neural networks: features of
different parts of an object are encoded on different channels of the
convolutional feature map. The basic idea of the channel attention
mechanism is to continuously adjust the weights of each channel

through learning, and generate a vector of length equal to the
number of channels through the network, and each element in the
vector corresponds to the weight of each channel of the feature
map, which in essence tells the network the parts of the pedestrian
to be attended to. An attention mechanism algorithm pseudo-code
is shown in Algorithm 2.

Input: Attention mechanism G(V;E), node features

{xv ,∀v ∈ V}, Number of layers K,

Attention mechanism a, Trainable parameters 2 for

neural networks

Output: Node embeddings hv for all v ∈ V

1: for each node v ∈ V do

2: N (v)← the set of neighbors of v in G

3: h
(0)
v ← xv

4: for k = 1 to K do

5: h
(k)
v ← AGGREGATE(k)

({

h
(k−1)
u : u ∈ N (v)

})

6: h
(k)
v ← COMBINE(k)

(

h
(k−1)
v , h(k)v

)

7: h
(k)
v ← ATTEND(k)

({

h
(k)
u : u ∈ N (v)

}

, h(k)v ;2, a
)

8: hv ← h
(K)
v for each node v ∈ V

Algorithm 2. The attention mechanism algorithm pseudo-code.

The network structure is shown in Figure 4, where the
classification branches are pooled first; the pooled weight vectors
are fed into the fully connected layers FC1 and FC2 for
“compression” and “stretching” operations. Then the components
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of the vectors are restricted between 0 and 1 by the sigmoid
function, and the two vectors are summed and fused to form the
final weight vector. In this paper, global pooling and maximum
pooling are used simultaneously to highlight the main features
while preserving the average characteristics of each channel,
allowing the network to pay more attention to the visible parts of
the pedestrians. The channel attention module generates a channel
attention map using inter-channel relationships between features,
and this feature assigns greater weight to channels where salient
targets exhibit high response, as shown in the schematic diagram
of the channel as attention module structure in Figure 4.

First, the input feature F is subjected to both maximum pooling
and average pooling operations, and the null of the aggregated
feature mapping The interval information is then input to a shared
network, and the spatial dimension of the input feature map is
compressed to sum the elements in the feature map one by one and
generate the channel attention weights. The calculation formula is
shown in equation below.

Lr(t, t
∗) =

∑

n∈A

(p∗n = 1)
∑

i∈x,y,w,h

smoothL1(tni − t∗ni ) (7)

3.3.2. Spatial attention mechanism
Another attention mechanism cited in this paper is the spatial

attention mechanism, which is essentially a network structure that
generates a mask of the same size as the original image features,
where the value of each element in the mask represents the feature
map weight corresponding to the pixel at that location, and the
weights change as they are continuously learned and adjusted,
which in essence tells the network which regions to focus on.
As shown in Figure 5, the sub-network structure of the spatial
attention mechanism in this paper.

The feature map is first convolved by four 3×3-sized
convolutional checks and return branches with both 256 channels,
and then compressed into a single mask with 3×3 convolution
and 1 channels. the original feature map is multiplied by EXP
(mask parameter) multiplied to retain the original background
information, thus adjusting the weights of each position of
the original feature map. To guide the learning of the spatial
attention mechanism, this paper uses the supervised information
of the pedestrian as the label of the spatial attention mechanism
to generate a pixel-level target mask: the pixel values of the
pedestrian’s full-body bounding box and visible bounding box
regions are set to 0.8 and 1, respectively, and the pixel values of
the remaining background regions are set to 0. Such a labeling will
guide the spatial attention mechanism to focus its attention on the
road regions in the frame at the The spatial attention mechanism is
guided to pay more attention to the road visible area while focusing
on the road area in the picture.

3.4. Loss function

The loss function is an important part of the deep learning
process, and the main purpose of using the loss function in this
paper is to evaluate the prediction accuracy of the model and adjust
the weight turnover, the loss function can make the convergence

speed of the neural network become faster and make the prediction
accuracy of the traffic scene more accurate. The most obvious
difference between the two types of problems is that the result
of regression prediction is continuous (e.g., house price), while
the result of classification prediction is discrete (e.g., handwriting
recognition). For example, semantic segmentation can be thought
of as classifying each pixel in an image, and target detection can be
thought of as regression on the position and size of a Bounding Box
in an image.

3.4.1. Overall loss function of the algorithm
In this paper, the parameters of each component are tuned

jointly by a multi-task loss function, which consists of 3
components.

Loss =
1

Mc

∑

n∈A

Lc(pn, p
∗
n)+ λ1

1

Mr
Lr(t, t

∗)+ λ2La(m,m∗) (8)

where: Lc(pn, p∗n) is an improved classification loss function in
the basic form of a weighted cross−entropy loss function, whose
main purpose is to improve the problem of extreme imbalance
between positive and negative samples in the regression−based
traffic scene detection algorithm;Mc is the number of all predicted
frames;Mr is the number of all predicted frames, considering only
the part judged as foreground; La(m,m∗) is the loss function of
the spatial attention mechanism sub-network, which L(m,m∗) is
the loss function of the spatial attention mechanism subnetwork,
which is actually a cross−entropy loss function based on each
pixel of the mask; p and p denote the category probability of the
nth predicted traffic frame and the corresponding actual category,
respectively; Lr(t, t∗) is a new regression loss function proposed in
this paper, which can design the size of the weights independently
according to different masking degrees, and its design ideas and
details will be introduced below; m, m∗ are the masks generated
by the spatial attention mechanism and their corresponding mask
labels, respectively; λm, m1 are the masks generated by the spatial
attention mechanism and their corresponding mask labels; λ and
λ2 are the parameters used to balance the sub−loss functions, and
their values are both 1 in this paper.

3.4.2. Regression loss function for occlusion
perception

In generic target detection, the classical regression loss function
is the smooth L1 function, which takes the form:

Lr(t, t
∗) =

∑

n∈A

(p∗n = 1)
∑

i∈x,y,w,h

smoothL1(tni − t∗ni ) (9)

The expected weight is between 0 and 1, and even for a perfectly
correct prediction frame, its IOU with the visible area may be a
smaller value. The overlap between the visible area of the road and
the prediction frame is used to improve the occlusion problem, and
the practice is to judge this prediction frame as a positive sample
only when the IOU of the prediction frame with both the road
boundary frame and the visible area boundary frame is greater than
a fixed threshold.
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FIGURE 4

Channel attention sub-network structure.

FIGURE 5

Spatial attention sub-network structure.

4. Experiment

4.1. Experimental data set

The AI-TOD aerial image dataset was selected for training.
700,621 object instances in 8 categories from 28,036 aerial images
were included in AI-TOD. In addition, 1000 instances of data from
the Inria aerial image dataset were used as the validation set for
model validation, As shown in Figure 6. The dataset consists of
1171 3-channel images and corresponding 2-channel segmentation
labels with a spatial resolution of 1m, and each image has a size
of 1500∗1500 pixels. The labels are binarized images with a road
pixel value of 1 and a background pixel value of 0. The dataset
is randomly divided into three groups,seventy percent for the
training set, twenty percent for the test set, and ten percent for
the validation set. To avoid overfitting, the image preprocessing
was first performed using a sliding window cropping technique
with a span of 256 pixels, As shown in Figure 7; then standard
data enhancement was performed, and all cropped images were
cropped, scaled, randomly rotated, horizontally and vertically
flipped and image color changed. Some of the example data in the
dataset are shown below.

4.2. Experimental platform

This paper uses Pytorch 1.10.0 deep learning framework, the
operating system environment is Windows 10, the GPU is NVIDIA
GeForce GTX 1650, the system memory size is 24G, and the
programming language is Python 3.8.0. The initial learning rate
is 0.001, which decreases to 0.0001 at 200 rounds and decays
to 0.00001 at 260 rounds. 260 rounds of network training are
conducted, and the batchsize of each GPU is 32. The images are
modified by image preprocessing. In this paper, we crop the images
in the COCO dataset to 256×192 size, and then achieve the data
enhancement effect by random flipping and random scaling.

4.3. Evaluation criteria

Remote sensing images are widely used in various fields
such as urban planning, traffic management, and environmental
monitoring. Road extraction from remote sensing images is an
essential task that enables the identification and mapping of
transportation networks. It helps in building precise and accurate
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FIGURE 6

Remote sensing image map in the dataset.

geographic information systems and enhancing the performance
of autonomous vehicles. However, the automatic road extraction
methods face significant challenges due to the complex and diverse
environments of remote sensing images. Therefore, it is necessary
to evaluate the quality of the road extraction methods using
appropriate metrics. In this context, recall rate and cross-merge
ratio are universal evaluation metrics that are commonly used to
assess the performance of remote sensing image road extraction
methods. The recall rate is defined as the ratio of true positive
predictions to the total number of actual positive samples, which
represents the ability of the method to detect all the road pixels. It
is given by the following formula:

R =
TP

TP + FN
(10)

Where TP is the number of true positives, and FN is the number
of false negatives.

On the other hand, the cross-merge ratio represents the
accuracy of the method in identifying the actual road pixels. It is
defined as the ratio of true positive predictions to the total number

of predicted road pixels, including both true positives and false
positives. It is given by the following formula:

U =
TP

TP + FP
(11)

Where FP is the number of false positives.
Both recall rate and cross-merge ratio are important metrics for

evaluating the performance of road extraction methods. However,
they have their limitations. For example, the recall rate only
considers the ability of the method to detect road pixels, but
it does not measure the accuracy of the detection. Therefore, a
method with a high recall rate may produce a large number of false
positives. On the other hand, the cross-merge ratio only measures
the accuracy of the predicted road pixels, but it does not consider
the ability of the method to detect all the road pixels. Therefore, a
method with a high cross-merge ratio may miss some road pixels.

To overcome these limitations, other evaluation metrics have
been proposed, such as F1-score, precision, and accuracy. The F1-
score is the harmonic mean of precision and recall, and it is given
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FIGURE 7

Target extraction area in remote sensing images.

by the following formula:

F1 =
2PR

P + R
(12)

Where P is the precision, which is the ratio of true positive
predictions to the total number of predicted positive samples, and
it is given by the following formula:

P =
TP

TP + FP
(13)

The accuracy is the ratio of the total number of correct
predictions to the total number of predictions, and it is given by
the following formula:

accuracy =
TP + TN

TP + TN + FP + FN
(14)

4.4. Analysis of experimental results

In order to verify the feasibility of the road segmentation
model, the U-Net model based on the U-Net model and

the improved model in this paper to implement the road-

road extraction task for high-resolution remote sensing images,
As shown in the Figure 8. Among them, the parameters of
the comparison network are set the same as the original

method. The performance comparison of different models for
road segmentation is given in Table 1. It can be seen in
Figures 9, 10 that: the recall rate of this model is improved
by five percent compared with that of U-Net, which is more

consistent with the real labels and has better recognition rate
for roads in image. the cross-merge ratio of this model is
improved by zero point eight percent compared with that of

U-Net, It shows the superior performance of the model in
road extraction.

In order to compare the performance of different
attention modules, this paper introduces several attention
modules into GNN. The results are shown in Table 2.
Except for the ECA attention module, all the other
three attention modules gained in the U-Net network
and achieved better performance than the baseline
network. Better performance than the baseline network
was achieved.
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FIGURE 8

Results of model application in real remote sensing road extraction.

TABLE 1 Results of experimental models compared to other research models.

Model Accuracy Recall Precision F1-score Val-IOU

U-Net (Shahzad et al., 2018) 80.1 73.1 74.8 74.3 77.6

VGG (Kampffmeyer et al., 2018) 76.5 74.12 76.89 77.05 79.23

CNN (Razi et al., 2022) 83.1 73.25 76.85 75.66 76.21

DCNN (Razi et al., 2022) 84.2 75.21 77.82 76.23 77.85

LinkNet (Papadomanolaki et al., 2019) 84.51 73.57 75.61 76.23 79.44

D-LinkNet (Papadomanolaki et al., 2019) 85.2 74.02 76.13 76.87 80.32

Ours 87.13 75.68 77.34 77.17 82.23

FIGURE 9

Comparison of precision and recall results values of the model in this paper with other network models.
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FIGURE 10

Comparison of F1-score and Val-IOU results values of the model in this paper with other network models.

TABLE 2 U-Net comparison experiments with several di�erent attention

modules.

Method Recall Precision F1-score Val-IOU

ECA-GNN
(Shahzad et al.,
2018)

75.24 75.53 73.45 76.3

GNN
(Kampffmeyer
et al., 2018)

76.91 74.23 74.57 77.13

CBAM-GNN
(Razi et al., 2022)

77.31 73.23 75.21 76.88

SE-GNN (Razi
et al., 2022)

75.48 76.58 75.74 76.93

GC-GNN-Net
(Razi et al., 2022)

77.82 74.75 74.89 76.65

Ours 78.49 75.85 76.43 77.98

5. Discussion

In response to the challenges faced in deep learning-based high-
resolution remote sensing image information extraction, there
are several issues that need to be addressed, such as the lack
of global contextual information, over-segmentation problems,
and difficulties in fusion of multimodal data. Additionally, the
computational complexity, long training periods, and limited
information transfer in both vertical and horizontal directions
pose further challenges. To overcome these issues and improve
the accuracy of remote sensing image information extraction, our
proposed approach that integrates global attention mechanisms
and robot-assisted techniques holds great promise in addressing the
challenges of deep learning-based high-resolution remote sensing
image information extraction. By incorporating global attention,
we enhance the perception of scenes, improve object classification
accuracy, and overcome the lack of global contextual information.
Furthermore, the spatial attention mechanism helps reduce over-
segmentation problems and facilitates the fusion of multimodal
data, resulting in more accurate and detailed feature extraction.
Robots equipped with advanced sensors and cameras are invaluable
in the remote sensing domain. Their capabilities in data acquisition,
preprocessing, and feature extraction contribute significantly to

improving the efficiency and accuracy of remote sensing image
analysis. Moreover, robot assistance in data fusion and annotation
reduces manual efforts and enhances overall extraction processes.

The interdisciplinary nature of our approach bridges the gap
between remote sensing, robotics, and transportation, opening new
possibilities for research and applications in traffic management,
road safety, and urban planning. By leveraging the strengths
of attention mechanisms and robot-assisted techniques, we can
achieve enhanced information extraction, leading to more effective
traffic management, safer roads, and intelligent transportation
systems. This advancement in the field of high-resolution remote
sensing image analysis and robotics will undoubtedly have
important economic value and far-reaching research significance
in various applications and industries.

6. Conclusion

In the context of robotics, the proposed approach holds
significant potential to augment the capabilities of robotic
systems in road and transportation management. By integrating
remote sensing and deep learning technologies into robots,
they can actively contribute to various tasks, including road
monitoring, traffic flow analysis, and autonomous navigation.
With the ability to extract road and transportation features
from remote sensing images, robots can efficiently carry
out tasks such as road inspection, traffic surveillance, and
swift response to accidents. The enhanced retrieval of traffic
scenes from remotely sensed images, facilitated by the
attentional mechanism fusion and graph neural algorithms,
provides robots with precise and up-to-date information for
effective decision-making in real-time traffic management
and planning.

This integration of robotics with remote sensing and deep
learning not only improves the efficiency of traffic-related
tasks but also enhances road safety and overall transportation
systems. With robots capable of autonomously navigating urban
environments and capturing high-resolution remotely sensed
images, comprehensive traffic databases can be created, allowing for
more accurate and informed traffic management strategies.

As robotics technology continues to advance, the potential
for further advancements in the field of intelligent transportation
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becomes even more promising. The ongoing evolution of
deep learning techniques and visual attention mechanisms will
continue to shape the future of remote sensing information
extraction, enabling robots to play an even more significant
role in traffic management, road safety, and urban planning.
However, it is essential to acknowledge that current remote
sensing information extraction methods based on deep learning
still heavily rely on large training datasets, which can be
resource-intensive to produce. Future research should focus on
addressing this challenge and finding innovative ways to integrate
domain knowledge and manual expertise with deep learning
models to reduce dependence on extensive sample sets. By
combining human expertise with cutting-edge technologies, the
potential for advancing intelligent transportation systems becomes
even greater.
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