8 research outputs found

    Transcriptome-based network analysis related to M2-like tumor-associated macrophage infiltration identified VARS1 as a potential target for improving melanoma immunotherapy efficacy

    Get PDF
    Rationale The M2-like tumor-associated macrophages (TAMs) are independent prognostic factors in melanoma. Methods We performed weighted gene co-expression network analysis (WGCNA) to identify the module most correlated with M2-like TAMs. The Cancer Genome Atlas (TCGA) patients were classified into two clusters that differed based on prognosis and biological function, with consensus clustering. A prognostic model was established based on the differentially expressed genes (DEGs) of the two clusters. We investigated the difference in immune cell infiltration and immune response-related gene expression between the high and low risk score groups. Results The risk score was defined as an independent prognostic value in melanoma. VARS1 was a hub gene in the M2-like macrophage-associated WGCNA module that the DepMap portal demonstrated was necessary for melanoma growth. Overexpressing VARS1 in vitro increased melanoma cell migration and invasion, while downregulating VARS1 had the opposite result. VARS1 overexpression promoted M2 macrophage polarization and increased TGF-β1 concentrations in tumor cell supernatant in vitro. VARS1 expression was inversely correlated with immune-related signaling pathways and the expression of several immune checkpoint genes. In addition, the VARS1 expression level helped predict the response to anti-PD-1 immunotherapy. Pan-cancer analysis demonstrated that VARS1 expression negatively correlated with CD8 T cell infiltration and the immune response-related pathways in most cancers. Conclusion We established an M2-like TAM-related prognostic model for melanoma and explored the role of VARS1 in melanoma progression, M2 macrophage polarization, and the development of immunotherapy resistance

    Establishing a Prognostic Model Based on Ulceration and Immune Related Genes in Melanoma Patients and Identification of EIF3B as a Therapeutic Target

    Get PDF
    Ulceration and immune status are independent prognostic factors for survival in melanoma patients. Herein univariate Cox regression analysis revealed 53 ulcer-immunity-related DEGs. We performed consensus clustering to divide The Cancer Genome Atlas (TCGA) cohort (n = 467) into three subtypes with different prognosis and biological functions, followed by validation in three merged Gene Expression Omnibus (GEO) cohorts (n = 399). Multiomics approach was used to assess differences among the subtypes. Cluster 3 showed relatively lesser amplification and expression of immune checkpoint genes. Moreover, Cluster 3 lacked immune-related pathways and immune cell infiltration, and had higher proportion of non-responders to immunotherapy. We also constructed a prognostic model based on ulceration and immune related genes in melanoma. EIF3B was a hub gene in the intersection between genes specific to Cluster 3 and those pivotal for melanoma growth (DepMap, https://depmap.org/portal/download/). High EIF3B expression in TCGA and GEO datasets was related to worst prognosis. In vitro models revealed that EIF3B knockdown inhibited melanoma cell migration and invasion, and decreased TGF-beta 1 level in supernatant compared with si-NC cells. EIF3B expression was negatively correlated with immune-related signaling pathways, immune cell gene signatures, and immune checkpoint gene expression. Moreover, its low expression could predict partial response to anti-PD-1 immunotherapy. To summarize, we established a prognostic model for melanoma and identified the role of EIF3B in melanoma progression and immunotherapy resistance development

    5ʹ-Ectonucleotidase CD73/NT5E supports EGFR-mediated invasion of HPV-negative head and neck carcinoma cells

    No full text
    Abstract Background Epithelial-to-mesenchymal transition (EMT) of malignant cells is a driving force of disease progression in human papillomavirus-negative (HPV-negative) head and neck squamous cell carcinomas (HNSCC). Sustained hyper-activation of epidermal growth factor receptor (EGFR) induces an invasion-promoting subtype of EMT (EGFR-EMT) characterized by a gene signature (“‘EGFR-EMT_Signature’”) comprising 5´-ectonucleotidase CD73. Generally, CD73 promotes immune evasion via adenosine (ADO) formation and associates with EMT and metastases. However, CD73 regulation through EGFR signaling remains under-explored and targeting options are amiss. Methods CD73 functions in EGFR-mediated tumor cell dissemination were addressed in 2D and 3D cellular models of migration and invasion. The novel antagonizing antibody 22E6 and therapeutic antibody Cetuximab served as inhibitors of CD73 and EGFR, respectively, in combinatorial treatment. Specificity for CD73 and its role as effector or regulator of EGFR-EMT were assessed upon CD73 knock-down and over-expression. CD73 correlation to tumor budding was studied in an in-house primary HNSCC cohort. Expression correlations, and prognostic and predictive values were analyzed using machine learning-based algorithms and Kaplan–Meier survival curves in single cell and bulk RNA sequencing datasets. Results CD73/NT5E is induced by the EGF/EGFR-EMT-axis and blocked by Cetuximab and MEK inhibitor. Inhibition of CD73 with the novel antagonizing antibody 22E6 specifically repressed EGFR-dependent migration and invasion of HNSCC cells in 2D. Cetuximab and 22E6 alone reduced local invasion in a 3D-model. Interestingly, combining inefficient low-dose concentrations of Cetuximab and 22E6 revealed highly potent in invasion inhibition, substantially reducing the functional IC50 of Cetuximab regarding local invasion. A role for CD73 as an effector of EGFR-EMT in local invasion was further supported by knock-down and over-expression experiments in vitro and by high expression in malignant cells budding from primary tumors. CD73 expression correlated with EGFR pathway activity, EMT, and partial EMT (p-EMT) in malignant single HNSCC cells and in large patient cohorts. Contrary to published data, CD73 was not a prognostic marker of overall survival (OS) in the TCGA-HNSCC cohort when patients were stratified for HPV-status. However, CD73 prognosticated OS of oral cavity carcinomas. Furthermore, CD73 expression levels correlated with response to Cetuximab in HPV-negative advanced, metastasized HNSCC patients. Conclusions In sum, CD73 is an effector of EGF/EGFR-mediated local invasion and a potential therapeutic target and candidate predictive marker for advanced HPV-negative HNSCC

    Additional file 1 of A transcriptomic map of EGFR-induced epithelial-to-mesenchymal transition identifies prognostic and therapeutic targets for head and neck cancer

    No full text
    Additional file 1: SupplementaryFigure 1. Copy number variation and expression of EGFR in Kyse30and FaDu cells. Supplementary Figure 2. GSEA of EGF- and EpEX-treated Kyse30and FaDu cells. Supplementary Figure 3. Over-representation analysis of genesof the EGFR-mediated EMT signature. SupplementaryFigure 4. Comparison ofEGFR-mediated EMT, pEMT, and EMT signatures. Supplementary Figure 5. Comparisonof EMT signatures for prognostic purposes.Supplementary Figure 6. ITGB4,ITGA6, LAMA3, LAMB3, and LAMC2 expression in HNSCC. Supplementary Figure 7. ITGB4expression in malignant and non-malignant single cells in different cancerentities. Supplementary Figure 8. ITGA6 expression in malignant andnon-malignant single cells in different cancer entities. Supplementary Figure 9. LAMA3expression in malignant and non-malignant single cells in different cancerentities. Supplementary Figure 10. LAMB3 expression in malignant andnon-malignant single cells in different cancer entities. Supplementary Figure 11. LAMC2expression in malignant and non-malignant single cells in different cancerentities. Supplementary Figure 12. ITGB4 expression in knockdown clonesof Kyse30 and FaDu cells. Supplementary Figure 13. Wound healing capacity of control andITGB4-knockdown cell lines. SupplementaryFigure 14. Tumor buddingintensities in HNSCC
    corecore