61 research outputs found

    Engineered soluble ACE2 receptor: Responding to change with change

    Get PDF
    SARS coronavirus 2 (SARS-CoV-2) invades the human body by binding to major receptors such as ACE2 via its S-spike protein, so the interaction of receptor-binding sites has been a hot topic in the development of coronavirus drugs. At present, the clinical progress in monoclonal antibody therapy that occurred early in the pandemic is gradually showing signs of slowing. While recombinant soluble ACE2, as an alternative therapy, has been modified by many engineering methods, both the safety and functional aspects are approaching maturity, and this therapy shows great potential for broadly neutralizing coronaviruses, but its progress in clinical development remains stalled. Therefore, there are still several key problems to be considered and solved for recombinant soluble ACE2 to be approved as a clinical treatment as soon as possible

    Late Neo-Proterozoic Tectono-Sedimentary Evolution of the Tarim Block, NW China

    Get PDF
    The study of the late Neo-Proterozoic tectono-sedimentary evolution of the Tarim Basin is a key to unravel the tectonic setting, the intracontinental rift formation mechanism, and the sedimentary filling processes of this basin. Since in the Tarim Basin, the late Neo-Proterozoic to early Cambrian sedimentary successions were preserved, this basin represents an excellent site in order to study the Precambrian geology. Based on the outcrop data collected in the peripheral areas of the Tarim Basin, coupled with the intra-basinal drill sites and seismic data previously published, the late Neo-proterozoic tectono-sedimentary evolution of the Tarim Basin has been investigated. These data show that there were two individual blocks before the Cryogenian Period, namely, the north Tarim Block and the south Tarim Block. In the early Neo-Proterozoic (ca. 800 Ma), the amalgamation of two blocks resulted in the formation of the unified basement. During the late Neo-Proterozoic, the Tarim Block was in an extensional setting as a result of the Rodinia supercontinent breakup and then evolved into an intracontinental rift basin. The tectono-sedimentary evolution of the basin may be divided into three stages: the rifting stage (780–700 Ma), the rifting to depression transitional stage (660–600 Ma), and the post-rift depression stage (580–540 Ma). In the rifting stage, intracontinental rifts (i.e., the Awati Rift, the North Manjar Rift, and the South Manjar Rift) were formed, in which coarse-grained clastic sediments were deposited, generally accompanied by a massive volcanic activity due to an intensive stretching. In the rifting-depression transitional stage and in the post-rift depression stage, the paleogeography was characterized by uplifts to the south and depressions to the north. Three types of depositional association (i.e., clastic depositional association, clastic-carbonate mixed depositional association, and carbonate depositional association) were formed. The distribution of the lower Cambrian source rock was genetically related to the tectono-sedimentary evolution during the late Neo-Proterozoic. The lower Cambrian source rock was a stable deposit in the northern Tarim Basin, where the late Ediacaran carbonate was deposited, thinning out toward the central uplift. It was distributed throughout the entire Mangar region in the east and may be missing in the Magaiti and the southwestern Tarim Basin

    Tunable polarization-drived superior energy storage performance in PbZrO3 thin films

    Get PDF
    Antiferroelectric PbZrO3 (AFE PZO) films have great potential to be used as the energy storage dielectrics due to the unique electric field (E)-induced phase transition character. However, the phase transition process always accompanies a polarization (P) hysteresis effect that induces the large energy loss (Wloss) and lowers the breakdown strength (EBDS), leading to the inferior energy storage density (Wrec) as well as low efficiency. In this work, the synergistic strategies by doping smaller ions of Li+–Al3+ to substitute Pb2+ and lowering the annealing temperature (T) from 700 to 550 ℃ are proposed to change the microstructures and tune the polarization characters of PZO films, except to dramatically improve the energy storage performances. The prepared Pb(1−x)(Li0.5Al0.5)xZrO3 (P(1−x)(L0.5A0.5)xZO) films exhibit ferroelectric (FE)-like rather than AFE character once the doping content of Li+–Al3+ ions reaches 6 mol%, accompanying a significant improvement of Wrec of 49.09 J/cm3, but the energy storage efficiency (η) is only 47.94% due to the long-correlation of FE domains. Accordingly, the low-temperature annealing is carried out to reduce the crystalline degree and the P loss. P0.94(L0.5A0.5)0.06ZO films annealed at 550 ℃ deliver a linear-like polarization behavior rather than FE-like behavior annealed at 700 ℃, and the lowered remanent polarization (Pr) as well as improved EBDS (4814 kV/cm) results in the superior Wrec of 58.7 J/cm3 and efficiency of 79.16%, simultaneously possessing excellent frequency and temperature stability and good electric fatigue tolerance

    The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl.

    No full text
    Salvia miltiorrhiza, which is commonly known as Danshen, is a traditional Chinese herbal medicine. To illustrate its physiological and biochemical responses to salt stress and to evaluate the feasibility of cultivating this plant in saline coastal soils, a factorial experiment under hydroponic conditions was arranged on the basis of a completely randomised design with three replications. Five salinity treatments (0, 25, 50, 75 and 100 mM NaCl) were employed in this experiment. The results showed that salinity treatments of <100 mM NaCl did not affect the growth of Salvia miltiorrhiza in a morphological sense, but significantly inhibit the accumulation of dry matter. Salinity treatments significantly decreased the Chl-b content but caused a negligible change in the Chl-a content, leading to a conspicuous overall decrease in the T-Chl content. The Na(+) content significantly increased with increasing hydroponic salinity but the K(+) and Ca(2+) contents were reversed, indicating that a high level of external Na(+) resulted in a decrease in both K(+) and Ca(2+) concentrations in the organs of Salvia miltiorrhiza. Salt stress significantly decreased the superoxide dismutase (SOD) activity of Salvia miltiorrhiza leaves in comparison with that of the control. On the contrary, the catalase (CAT) activity in the leaves markedly increased with the increasing salinity of the hydroponic solution. Moreover, the soluble sugar and protein contents in Salvia miltiorrhiza leaves dramatically increased with the increasing salinity of the hydroponic solution. These results suggested that antioxidant enzymes and osmolytes are partially involved in the adaptive response to salt stress in Salvia miltiorrhiza, thereby maintaining better plant growth under saline conditions

    Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea

    No full text
    <div><p></p><p>The granitoid suites encountered by drilling in the northern South China Sea (SCS) remain important for understanding the evolution of the late Mesozoic Southeast Asian continental margin. They comprise a range of rock types including diorite, tonalite, granodiorite, monzogranite and syenogranite with SiO<sub>2</sub> spanning 56.4–76.8%. Newly acquired secondary ion mass spectrometry (SIMS) U–Pb ages of samples from 14 boreholes indicate two key magmatic episodes: Late Jurassic (161.6–148.2 Ma) and Early Cretaceous (136.5–101.7 Ma). Jurassic magmatism probably began in late Middle Jurassic time, documented by the dates of inherited zircons. The granitoids are dominated by metaluminous to weakly peraluminous I-type granites, are transitional between magnesian and ferroan, and encompass calc-alkaline, high-K calc-alkaline, and shoshonitic series. The geochemical signatures suggest that these granitoids were mostly generated in a normal continental arc environment. Notable features of the I-type samples are well-defined negative Nb–Ta–Ti anomalies typical of arc-related magmas. Taken together, the late Mesozoic arc granites of the SCS, the accretionary wedge of the Palawan terrane to the southeast, and the zone of lithospheric extension north of the SCS throughout Southeast China, define a southeast-to-northwest trench-arc-backarc architecture for the late Mesozoic Southeast Asian continental margin whose geodynamic setting is related to subduction of the Palaeo-Pacific slab beneath the Asian continent. Two key subduction episodes are recognized, one in Late Jurassic and the other in Early Cretaceous time.</p></div

    New Mitogenome Features of Philopotamidae (Insecta: Trichoptera) with Two New Species of Gunungiella

    No full text
    A total of 14 individuals of Philopotamidae, from China, were examined. Six species in four genera, including two new species of the genus Gunungiella, were recognized. Their COI barcode sequences were extracted, mitogenomes were sequenced, assembled and analyzed. All of these sequences were used to further reveal the phylogenetic relationships of the family Philopotamidae. In addition, two new species: Gunungiella wangi n. sp., Gunungiella flabellata n. sp. were described and illustrated

    Community Characteristics and Niche Analysis of Soil Animals in Returning Farmland to Forest Areas on the Loess Plateau

    No full text
    Niche theory is significant for understanding the function of community structure, interspecific relationships, and community dynamic succession. However, there are few studies on the soil animal niche in returning farmland to forest areas on the Loess Plateau, making it challenging to comprehend the utilization of soil animal resources, the stability of the local community, and the succession process in the areas. Therefore, this study collected soil animals in five typical vegetation types: Robinia pseudoacacia (R), Hippophae rhamnoides (H), Populus simonii (P), Pinus tabulaeformis (T), and Armeniaca sibirica x Hippophae rhamnoides (M), with abandoned grassland (G) used as a control group. Then, the number of soil animal taxa, individuals, diversity, and niche were sampled and examined in the study areas during the four seasons of spring, summer, autumn, and winter using the manual sorting method and the Tullgren method. The results revealed that 3872 soil animals from 3 Phyla, 8 Classes, 22 Orders, and 49 Families were captured in the study areas. The dominant groups of soil macrofauna were Diptera larvae, Julidae, and Formicidae, and the dominant groups of meso–micro soil fauna were Oribatida, Protospira, and Collembola juveniles. Soil animals have rich nutritional function groups, with the most saprophytic soil animal groups. The individual density and taxa number of soil animals in G were lower than other vegetation on the whole. H, M, and P had a higher Shannon–Winner index than the other vegetation. Seasonal changes had different effects on macro and meso–micro soil fauna. The diversity of soil macrofauna is higher in spring and summer, and that of meso–micro soil fauna is higher in autumn and winter. Oribatida, Diptera Larvae, and Formicidae had a large niche width in the main taxa of soil animals, with universal adaptability to the environment. Cicadellidae and Culicidae had narrow niche widths and were highly dependent on resources and the environment. There were 67 pairs of highly overlapped (Oik > 0.8) taxa of soil animals and 56 pairs of moderately overlapped (0.6 Oik ≤ 0.8) taxa, accounting for 80.39% of the total number of taxa. Soil animals had high commonality in resource utilization, intense competition, and poor community stability. As a result, we can conclude that the soil animal community in the study areas was in the stage of succession

    Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes

    No full text
    Winter wheat (Triticum aestivum L. cv. Kenong9204) was grown in open top chambers with either ambient or elevated CO2 concentrations (358 ± 19 [mu]mol mol-1 or 712 ± 22 [mu]mol mol-1, respectively) in well-watered or drought conditions. Although elevated CO2 did not significantly affect the height of the plants at harvest, it significantly increased the aboveground biomass by 10.1% and the root/shoot ratio by 16.0%. Elevated CO2 also significantly increased the grain yield (GY) by 6.7% when well-watered and by 10.4% when drought stressed. Specifically, in the well-watered condition, this increase was due to a greater number of ears (8.7% more) and kernels (8.6). In the drought condition, it was only due to a greater number of spikes (17.1% more). In addition, elevated CO2 also significantly increased the water use efficiency (WUE) of the plants by 9.9% when well-watered and by 13.8% under drought conditions, even though the evapotranspiration (ET) of the plants did not change significantly. Elevated CO2 also significantly increased the root length in the top half of the soil profile by 35.4% when well-watered and by 44.7% under drought conditions. Finally, elevated CO2 significantly increased the root water uptake by 52.9% when well-watered and by 10.1% under drought conditions. These results suggest that (1) future increases in atmospheric CO2 concentration may have a significant effect on wheat production in arid and semiarid areas where wheat cultivation requires upland cropping or deficit irrigation; (2) wheat cultivars can be developed to have more tillers and kernels through selective breeding and field management; and (3) fertilizer and water management in topsoil will become increasingly important as atmospheric CO2 concentration rises.Elevated CO2 concentration Grain yield (GY) Water use efficiency (WUE) Root/shoot ratio (RSR) Root distribution Soil water depletion (SWD)

    The effects of various NaCl concentrations on the osmolyte contents of <i>Salvia miltiorrhiza</i> leaves.

    No full text
    <p>The osmolyte contents measured in the experiment include the soluble protein and soluble sugar contents. <i>Salvia miltiorrhiza</i> seedlings were cultivated in 1/2 Hoagland nutrient solution for 3 weeks and were later exposed to salt stress by adding NaCl up to 25, 50, 75 and 100 mM of the hydroponic solution for 30 days. Non-treated plants were used as controls (0 mM NaCl). Error bars represent the standard errors (SE) of the means.</p
    • …
    corecore