380 research outputs found

    Molecular Dynamics Study of Self-Diffusion in Zr

    Full text link
    We employed a recently developed semi-empirical Zr potential to determine the diffusivities in the hcp and bcc Zr via molecular dynamics simulation. The point defect concentration was determined directly from MD simulation rather than from theoretical methods using T=0 calculations. We found that the diffusion proceeds via the interstitial mechanism in the hcp Zr and both the vacancy and interstitial mechanisms give contribution in diffusivity in the bcc Zr. The agreement with the experimental data is excellent for the hcp Zr and for the bcc Zr it is rather good at high temperatures but there is a considerable disagreement at low temperatures

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces

    Get PDF
    Atomistic modeling shows that Cu–Nb and Cu–V interfaces contain high excess atomic volume due to constitutional vacancy concentrations of ∼ 5 at. % and ∼ 0.8 at. %., respectively. This finding is supported by experiments demonstrating that an approximately fivefold higher He concentration is required to observe He bubbles via through-focus transmission electron microscopy at Cu–Nb interfaces than in Cu–V interfaces. Interfaces with structures tailored to minimize precipitation and growth of He bubbles may be used to design damage-resistant composites for fusion reactors.United States. Dept. of Energy. Office of Basic Energy Sciences (award 2008LANL1026

    Spontaneous alloying in binary metal microclusters - A molecular dynamics study -

    Full text link
    Microcanonical molecular dynamics study of the spontaneous alloying(SA), which is a manifestation of fast atomic diffusion in a nano-sized metal cluster, is done in terms of a simple two dimensional binary Morse model. Important features observed by Yasuda and Mori are well reproduced in our simulation. The temperature dependence and size dependence of the SA phenomena are extensively explored by examining long time dynamics. The dominant role of negative heat of solution in completing the SA is also discussed. We point out that a presence of melting surface induces the diffusion of core atoms even if they are solid-like. In other words, the {\it surface melting} at substantially low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.

    Brain death, states of impaired consciousness, and physician-assisted death for end-of-life organ donation and transplantation

    Get PDF
    In 1968, the Harvard criteria equated irreversible coma and apnea (i.e., brain death) with human death and later, the Uniform Determination of Death Act was enacted permitting organ procurement from heart-beating donors. Since then, clinical studies have defined a spectrum of states of impaired consciousness in human beings: coma, akinetic mutism (locked-in syndrome), minimally conscious state, vegetative state and brain death. In this article, we argue against the validity of the Harvard criteria for equating brain death with human death. (1) Brain death does not disrupt somatic integrative unity and coordinated biological functioning of a living organism. (2) Neurological criteria of human death fail to determine the precise moment of an organism’s death when death is established by circulatory criterion in other states of impaired consciousness for organ procurement with non-heart-beating donation protocols. The criterion of circulatory arrest 75 s to 5 min is too short for irreversible cessation of whole brain functions and respiration controlled by the brain stem. (3) Brain-based criteria for determining death with a beating heart exclude relevant anthropologic, psychosocial, cultural, and religious aspects of death and dying in society. (4) Clinical guidelines for determining brain death are not consistently validated by the presence of irreversible brain stem ischemic injury or necrosis on autopsy; therefore, they do not completely exclude reversible loss of integrated neurological functions in donors. The questionable reliability and varying compliance with these guidelines among institutions amplify the risk of determining reversible states of impaired consciousness as irreversible brain death. (5) The scientific uncertainty of defining and determining states of impaired consciousness including brain death have been neither disclosed to the general public nor broadly debated by the medical community or by legal and religious scholars. Heart-beating or non-heart-beating organ procurement from patients with impaired consciousness is de facto a concealed practice of physician-assisted death, and therefore, violates both criminal law and the central tenet of medicine not to do harm to patients. Society must decide if physician-assisted death is permissible and desirable to resolve the conflict about procuring organs from patients with impaired consciousness within the context of the perceived need to enhance the supply of transplantable organs

    Sintering mechanisms of metals under electric currents

    Get PDF
    International audienceThis chapter concerns the microscopic mechanisms involved in densifi-cation of metallic powders submitted to high electric current pulses like in the SPS technique. Because metallic systems exhibit high electric conductivity, focus is made on evaluating the sensitivity of the densification mechanisms on the current. Thus, a first part is devoted to the influence of electric currents on elementary met-allurgical phenomena (diffusion, plasticity…) which are involved in densification. Then, after recalling the micromechanical models of densification, the SPS kinetics is described, and analyzed in the framework of these models, with emphasis on the role of the current. Finally, theoretical and experimental investigations on electrically induced mechanisms at the scale of the powder particle contacts, are presented: dielectric breakdown of oxide layers, arcs and plasma, Joule overheating, electroplasticity and electromigration. Then, conclusions are drawn on the most probable mechanisms, and on the role of the current

    Conditions for the occurrence of acicular ferrite transformation in HSLA steels

    Get PDF
    For the class of steels collectively known as high strength low alloy (HSLA), an acicular ferrite (AF) microstructure produces an excellent combination of strength and toughness. The conditions for the occurrence of the AF transformation are, however, still unclear, especially the effects of austenite deformation and continuous cooling. In this research, a commercial HSLA steel was used and subjected to deformation via plane strain compression with strains ranging from 0 to 0.5 and continuous cooling at rates between 5 and 50 °C s −1 . Based on the results obtained from optical microscopy, scanning electron microscopy and electron backscattering diffraction mapping, the introduction of intragranular nucleation sites and the suppression of bainitic ferrite (BF) laths lengthening were identified as the two key requirements for the occurrence of AF transformation. Austenite deformation is critical to meet these two conditions as it introduces a high density of dislocations that act as intragranular nucleation sites and deformation substructures, which suppress the lengthening of BF laths through the mechanism of mechanical stabilisation of austenite. However, the suppression effect of austenite deformation is only observed under relatively slow cooling rates or high transformation temperatures, i.e., conditions where the driving force for advancing the transformation interface is not sufficient to overcome the austenite deformation substructures
    corecore