49 research outputs found

    Prion variants, species barriers, generation and propagation

    Get PDF
    Prion variants faithfully propagate across species barriers, but if the barrier is too high, new variants (mutants) are selected, as shown in a recent BMC Biology report. Protein sequence alteration can prevent accurate structural templating at filament ends producing prion variants

    Probing the interface in a human co-chaperonin heptamer: residues disrupting oligomeric unfolded state identified

    Get PDF
    BACKGROUND: The co-chaperonin protein 10 (cpn10) assists cpn60 in the folding of nonnative polypeptides in a wide range of organisms. All known cpn10 molecules are heptamers of seven identical subunits that are linked together by β-strand interactions at a large and flexible interface. Unfolding of human mitochondrial cpn10 in urea results in an unfolded heptameric state whereas GuHCl additions result in unfolded monomers. To address the role of specific interface residues in the assembly of cpn10 we prepared two point-mutated variants, in each case removing a hydrophobic residue positioned at the subunit-subunit interface. RESULTS: Replacing valine-100 with a glycine (Val100Gly cpn10) results in a wild-type-like protein with seven-fold symmetry although the thermodynamic stability is decreased and the unfolding processes in urea and GuHCl both result in unfolded monomers. In sharp contrast, replacing phenylalanine-8 with a glycine (Phe8Gly cpn10) results in a protein that has lost the ability to assemble. Instead, this protein exists mostly as unfolded monomers. CONCLUSIONS: We conclude that valine-100 is a residue important to adopt an oligomeric unfolded state but it does not affect the ability to assemble in the folded state. In contrast, phenylalanine-8 is required for both heptamer assembly and monomer folding and therefore this mutation results in unfolded monomers at physiological conditions. Despite the plasticity and large size of the cpn10 interface, our observations show that isolated interface residues can be crucial for both the retention of a heptameric unfolded structure and for subunit folding

    Yeast Models of Prion-Like Proteins That Cause Amyotrophic Lateral Sclerosis Reveal Pathogenic Mechanisms

    Get PDF
    Many proteins involved in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS) are remarkably similar to proteins that form prions in the yeast Saccharomyces cerevisiae. These ALS-associated proteins are not orthologs of yeast prion proteins, but are similar in having long, intrinsically disordered domains that are rich in hydrophilic amino acids. These so-called prion-like domains are particularly aggregation-prone and are hypothesized to participate in the mislocalization and misfolding processes that occur in the motor neurons of ALS patients. Methods developed for characterizing yeast prions have been adapted to studying ALS-linked proteins containing prion-like domains. These yeast models have yielded major discoveries, including identification of new ALS genetic risk factors, new ALS-causing gene mutations and insights into how disease mutations enhance protein aggregation

    Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis

    Get PDF
    The isolation and characterization of the phytoene synthase gene from the green microalga Chlorella zofingiensis (CzPSY), involved in the first step of the carotenoids biosynthetic pathway, have been performed. CzPSY gene encodes a polypeptide of 420 amino acids. A single copy of CzPSY has been found in C. zofingiensis by Southern blot analysis. Heterologous genetic complementation in Escherichia coli showed the ability of the predicted protein to catalyze the condensation of two molecules of geranylgeranyl pyrophosphate (GGPP) to form phytoene. Phylogenetic analysis has shown that the deduced protein forms a cluster with the rest of the phytoene synthases (PSY) of the chlorophycean microalgae studied, being very closely related to PSY of plants. This new isolated gene has been adequately inserted in a vector and expressed in Chlamydomonas reinhardtii. The overexpression of CzPSY in C. reinhardtii, by nuclear transformation, has led to an increase in the corresponding CzPSY transcript level as well as in the content of the carotenoids violaxanthin and lutein which were 2.0- and 2.2-fold higher than in untransformed cells. This is an example of manipulation of the carotenogenic pathway in eukaryotic microalgae, which can open up the possibility of enhancing the productivity of commercial carotenoids by molecular engineering

    The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins

    No full text
    Advances in genomics and proteomics have revealed eukaryotic proteomes to be highly abundant in intrinsically disordered proteins that are susceptible to diverse post-translational modifications. Intrinsically disordered regions are critical to the liquid–liquid phase separation that facilitates specialized cellular functions. Here, we discuss how post-translational modifications of intrinsically disordered protein segments can regulate the molecular condensation of macromolecules into functional phase-separated complexes

    Superb Resolution And Contrast Of Transmission Electron Microscopy Images Of Unstained Biological Samples On Graphene-Coated Grids

    No full text
    Background In standard transmission electron microscopy (TEM), biological samples are supported on carbon films of nanometer thickness. Due to the similar electron scattering of protein samples and graphite supports, high quality images with structural details are obtained primarily by staining with heavy metals. Methods Single-layered graphene is used to support the protein self-assemblies of different molecular weights for qualitative and quantitative characterizations. Results We show unprecedented high resolution and contrast images of unstained samples on graphene on a low-end TEM. We show for the first time that the resolution and contrast of TEM images of unstained biological samples with high packing density in their native states supported on graphene can be comparable or superior to uranyl acetate-stained TEM images. Conclusion Our results demonstrate a novel technique for TEM structural characterization to circumvent the potential artifacts caused by staining agents without sacrificing image resolution or contrast, and eliminate the need for toxic metals. Moreover, this technique better preserves sample integrity for quantitative characterization by dark-field imaging with reduced beam damage. General significance This technique can be an effective alternative for bright-field qualitative characterization of biological samples with high packing density and those not amenable to the standard negative staining technique, in addition to providing high quality dark-field unstained images at reduced radiation damage to determine quantitative structural information of biological samples
    corecore