7 research outputs found

    The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP

    Get PDF
    This work was supported by the British Heart foundation (grant FS/11/23/28730). J.S.M. was funded by a British Heart Foundation PhD studentship. Funding to pay the Open Access publication charges for this article was provided by the Charities Open Access Fund (UK).Peer reviewedPublisher PD

    Reflections on going paperless in the Science Teaching Hub

    Get PDF
    Non peer reviewedPublisher PD

    In vitro modelling of Alzheimer's disease: Degeneration and cell death induced by viral delivery of amyloid and tau

    No full text
    12 p., 7 figures and referencesWith increasing life expectancy, Alzheimer's disease (AD) and other dementias pose an increasing and as yet unresolved health problem. A variety of cellular models of AD has helped to decipher some key aspects of amyloid and tau related degeneration. The initial approach of extracellular applications of synthetic peptides has now been replaced by the introduction of amyloid precursor protein (APP) and tau genes. In the present study adenoviral transductions were exploited for gene delivery into primary rat hippocampal and dorsal root ganglion (DRG) cultures to enable comparative and mechanistic studies at the cellular level and subsequent drug testing. Time lapse experiments revealed a different pattern of cell death: apoptotic-like for APP whereas tau positive cells joined and formed clusters. Mutated human APP or tau expression caused accelerated neuronal damage and cell death (cf. EGFP: -50% for APP at 5days; -40% for tau at 3days). This reduction in viability was preceded by decreased excitability, monitored via responses to depolarising KCl-challenges in Ca 2+ imaging experiments. Additionally, both transgenes reduced neurite outgrowth in DRG neurones. Treatment studies confirmed that APP induced-damage can be ameliorated by β- and γ-secretase inhibitors (providing protection to 60-100% of control levels), clioquinol (80%) and lithium (100%); while anti-aggregation treatments were beneficial for tau-induced damage (60-90% recovery towards controls). Interestingly, caffeine was the most promising drug candidate for therapeutic intervention with high efficacy in both APP (77%) and tau-induced models (72% recovery). Overall, these cellular models offer advantages for mechanistic studies and target identification in AD and related disorders.SS was in part supported by a Sixth Century studentship.Peer reviewe

    VEGF Signaling through Neuropilin 1 Guides Commissural Axon Crossing at the Optic Chiasm

    Get PDF
    During development, the axons of retinal ganglion cell (RGC) neurons must decide whether to cross or avoid the midline at the optic chiasm to project to targets on both sides of the brain. By combining genetic analyses with in vitro assays, we show that neuropilin 1 (NRP1) promotes contralateral RGC projection in mammals. Unexpectedly, the NRP1 ligand involved is not an axon guidance cue of the class 3 semaphorin family, but VEGF164, the neuropilin-binding isoform of the classical vascular growth factor VEGF-A. VEGF164 is expressed at the chiasm midline and is required for normal contralateral growth in vivo. In outgrowth and growth cone turning assays, VEGF164 acts directly on NRP1-expressing contralateral RGCs to provide growth-promoting and chemoattractive signals. These findings have identified a permissive midline signal for axons at the chiasm midline and provide in vivo evidence that VEGF-A is an essential axon guidance cue
    corecore