1,720 research outputs found

    Bose-Einstein Condensation of Excitons in Bilayer Electron Systems

    Get PDF
    An ordered state of electrons in solids in which excitons condense was proposed many years ago as a theoretical possibility but has, until recently, never been observed. We review recent studies of semiconductor bilayer systems that provide clear evidence for this phenomenon and explain why exciton condensation in the quantum Hall regime, where these experiments were performed, is as likely to occur in electron-electron bilayers as in electron-hole bilayers. In current quantum Hall exciton condensates, disorder induces mobile vortices that flow in response to a supercurrent and limit the extremely large bilayer counterflow conductivity.Comment: 19 pages including 4 figure

    Graphene Bilayer Structures with Superfluid Magnetoexcitons

    Get PDF
    We study superfluid behavior of a gas of spatially indirect magnetoexcitons with reference to a system of two graphene layers embedded in a multilayer dielectric structure. The system is considered as an alternative of a double quantum well in a GaAs haterostructure. We determine a range of parameters (interlayer distance, dielectric constant, magnetic field and gate voltage) where magnetoexciton superfluidity can be achieved. Temperature of superfluid transition is computed. A reduction of critical parameters caused by impurities is evaluated and critical impurity concentration is determined

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore