2,026 research outputs found

    Concerted activities of Mcm4, Sld3 and Dbf4 in control of origin activation and DNA replication fork progression

    Get PDF
    Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole genome DNA replication profile analysis is employed to access under various conditions the effect of mutations that alter the Mcm4 helicase regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3 and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response cellular conditions, the functions executed by Sld3, Dbf4 and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability

    Polaronic transport induced by competing interfacial magnetic order in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} heterostructure

    Full text link
    Using ultrafast optical spectroscopy, we show that polaronic behavior associated with interfacial antiferromagnetic order is likely the origin of tunable magnetotransport upon switching the ferroelectric polarity in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} (LCMO/BFO) heterostructure. This is revealed through the difference in dynamic spectral weight transfer between LCMO and LCMO/BFO at low temperatures, which indicates that transport in LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases in relatively high magnetic fields due to the increased spin alignment, while no discernible change is found in the LCMO film at low temperatures. These results thus shed new light on the intrinsic mechanisms governing magnetoelectric coupling in this heterostructure, potentially offering a new route to enhancing multiferroic functionality

    Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression

    Get PDF
    Eukaryotic DNA synthesis initiates from multiple replication origins and progresses through bidirectional replication forks to ensure efficient duplication of the genome. Temporal control of initiation from origins and regulation of replication fork functions are important aspects for maintaining genome stability. Multiple kinase-signaling pathways are involved in these processes. The Dbf4-dependent Cdc7 kinase (DDK), cyclin-dependent kinase (CDK), and Mec1, the yeast Ataxia telangiectasia mutated/Ataxia telangiectasia mutated Rad3-related checkpoint regulator, all target the structurally disordered N-terminal serine/threonine-rich domain (NSD) of mini-chromosome maintenance subunit 4 (Mcm4), a subunit of the mini-chromosome maintenance (MCM) replicative helicase complex. Using whole-genome replication profile analysis and single-molecule DNA fiber analysis, we show that under replication stress the temporal pattern of origin activation and DNA replication fork progression are altered in cells with mutations within two separate segments of the Mcm4 NSD. The proximal segment of the NSD residing next to the DDK-docking domain mediates repression of late-origin firing by checkpoint signals because in its absence late origins become active despite an elevated DNA damage-checkpoint response. In contrast, the distal segment of the NSD at the N terminus plays no role in the temporal pattern of origin firing but has a strong influence on replication fork progression and on checkpoint signaling. Both fork progression and checkpoint response are regulated by the phosphorylation of the canonical CDK sites at the distal NSD. Together, our data suggest that the eukaryotic MCM helicase contains an intrinsic regulatory domain that integrates multiple signals to coordinate origin activation and replication fork progression under stress conditions

    Observing cross-sectional images and averaged optical patterns of photonic crystal fibers using partially incoherent laser light

    Get PDF
    We couple the coherent laser light and the partially incoherent laser light into the photonic crystal fibers, respectively, and compare the observed fiber cross-sectional images. Lower coherence light can indeed help us obtain higher-quality and uniform cross-sectional images on the fiber output endfaces. We have observed rather unique and clear averaged optical mode patterns within the microstructures of a silica-air index-guiding solid-core photonic crystal fiber, which might be due to the stress-induced refractive-index inhomogeneity formed therein during the fiber manufacturing process. The experimental results are also compared with those images taken by other light sources or imaging systems. Besides, we successfully achieve capturing consecutively the various near-field averaged optical patterns of the solidcore photonic crystal fiber using this single-wavelength partially incoherent laser light imaging system
    • …
    corecore