44 research outputs found

    Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing

    Get PDF
    Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes

    Identification of type 2 diabetes loci in 433,540 East Asian individuals

    Get PDF
    Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes—NKX6-3 and ANK1—in different tissues4–6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways

    Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models

    Full text link

    EMP-1 is a junctional protein in a liver stem cell line and in the liver

    No full text
    In an attempt to discover cell markers for liver stem cells, a cDNA microarray analysis was carried out to compare the gene expression profiles between an adult liver stem cell line, Lig-8, and mature hepatocytes. Several genes in the categories of extracellular matrix, cell membrane, cell adhesion, transcription factor, signal molecule, transporter, and metabolic enzyme were shown to be differentially expressed in Lig-8 cells. Among them, epithelial membrane protein (EMP)-1 has been previously implicated with stem cell phenotypes. Antiserum to EMP-1 was produced to localize its expression. On monolayers of Lig-8 cells, EMP-1 was expressed along the intercellular border. In the liver harboring proliferating oval cells, the liver progenitors, EMP-1 was localized as ribbon bands, a staining pattern for epithelial junctions, all the way through bile duct epithelia, oval cell ductules, and into peri-hepatocytic regions. These peri-hepatocytic regions were proved to be bile canaliculi by co-localization of EMP-1 and dipeptidyl peptidase IV, an enzyme located on bile canaliculi. This report is the first to indicate EMP-1 to be a junctional protein in the liver. (c) 2005 Elsevier Inc. All rights reserved
    corecore