115 research outputs found

    Is Bilingualism a boon or bane for children with Communication Disorders?

    Get PDF
    Journal of Child Language Acquisition and Development - JCLA

    Optimal PAC Bounds Without Uniform Convergence

    Full text link
    In statistical learning theory, determining the sample complexity of realizable binary classification for VC classes was a long-standing open problem. The results of Simon and Hanneke established sharp upper bounds in this setting. However, the reliance of their argument on the uniform convergence principle limits its applicability to more general learning settings such as multiclass classification. In this paper, we address this issue by providing optimal high probability risk bounds through a framework that surpasses the limitations of uniform convergence arguments. Our framework converts the leave-one-out error of permutation invariant predictors into high probability risk bounds. As an application, by adapting the one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth, we propose an algorithm that achieves an optimal PAC bound for binary classification. Specifically, our result shows that certain aggregations of one-inclusion graph algorithms are optimal, addressing a variant of a classic question posed by Warmuth. We further instantiate our framework in three settings where uniform convergence is provably suboptimal. For multiclass classification, we prove an optimal risk bound that scales with the one-inclusion hypergraph density of the class, addressing the suboptimality of the analysis of Daniely and Shalev-Shwartz. For partial hypothesis classification, we determine the optimal sample complexity bound, resolving a question posed by Alon, Hanneke, Holzman, and Moran. For realizable bounded regression with absolute loss, we derive an optimal risk bound that relies on a modified version of the scale-sensitive dimension, refining the results of Bartlett and Long. Our rates surpass standard uniform convergence-based results due to the smaller complexity measure in our risk bound.Comment: 27 page

    The manifold rheology of fluidized granular media

    Full text link
    Fluidized granular media have a rich rheology: measuring shear stress σ\sigma as a function of shear rate γ˙\dot\gamma, they exhibit Newtonian behavior σ∼γ˙\sigma\sim\dot\gamma for low densities and shear rates, develop a yield stress for intermediate shear rates and densities approaching the granular glass transition, and finally, cross over to shear-thickening Bagnold scaling, σ∼γ˙2\sigma\sim\dot\gamma^2. This wealth of flow-behaviors makes fluidized beds a fascinating material, but also one that is challenging to encompass into a global theory, despite its relevance for optimizing industrial processes and predicting natural hazards. We provide careful measurements spanning eight orders of magnitude in shear rate, and show that all these rheological regimes can be described qualitatively and quantitatively using the granular integration through transient formalism, a theory for glassy dynamics under shear adapted to granular fluids

    Next-generation sequencing for endocrine cancers : Recent advances and challenges

    Get PDF
    Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives

    Tunable solidification of cornstarch under impact: how to make someone walking on cornstarch sink

    Get PDF
    • …
    corecore