4 research outputs found

    New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles

    Get PDF
    MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with amino and/or carboxylic groups. Solid state reaction was applied for the first time for loading of poorly soluble drug mesalazine (5-aminosalicylic acid – 5-ASA). Thenon-loaded and drug loaded mesoporous silicas were characterized by XRD, TEM, N2 physisorption, elemental analysis, thermal analysis, FT-IR and solid state NMR spectroscopy. Quantum-chemical calculations were used to predict the interactions between the drug molecule and the functional groups of the carrier. The nanoparticles were post-coated with sodium alginate and the coating modified the rate of mesalazine release from MCM-41NH2 and MCM-41NH2COOH particles. Cytotoxic evaluation on colon adenocarcinoma cell line revealed that the alginate coating reduced cytotoxicity of mesalazine loaded in the post-coated particles compared to the pure mesalazine. The functionalized, polymer coated mesoporous systems are suitable oral drug delivery systems providing an opportunity to modify drug release

    Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts

    Get PDF
    Monometallic (Cu, Ni) and bimetallic (Cu-Ni) catalysts supported on KIT-6 based mesoporous silica/zeolite composites were prepared using the wet impregnation method. The catalysts were characterized using X-ray powder diffraction, N2 physisorption, SEM, solid state NMR and H2-TPR methods. Finely dispersed NiO and CuO were detected after the decomposition of impregnating salt on the silica carrier. The formation of small fractions of ionic Ni2+ and/or Cu2+ species, interacting strongly with the silica supports, was found. The catalysts were studied in the gas-phase upgrading of lignocellulosic biomass-derived levulinic acid (LA) to γ-valerolactone (GVL). The bimetallic, CuNi-KIT-6 catalyst showed 100% LA conversion at 250 °C and atmospheric pressure. The high LA conversion and GVL yield can be attributed to the high specific surface area and finely dispersed Cu-Ni species in the catalyst. Furthermore, the catalyst also exhibited high stability after 24 h of reaction time with a GVL yield above 80% without any significant change in metal dispersion
    corecore